amplifier
Research Papers
Infra-slow Fluctuation Training in Clinical Practice: A Technical History
Infra-slow Fluctuation (ISF) electroencephalogram (EEG) biofeedback is a recent development in neurofeedback training. This form of training is focused on the lowest energy the brain produces (< 0.1 Hz). The intervention is performed with a Direct Current (DC) coupled neurofeedback amplifier. It is distinct from Slow Cortical Potential (SCP) training and Infra-Low Frequency (ILF) training. It shares a similar optimization process with ILF that focuses on emergent state shifts within sessions. These state shifts require frequency adjustments that optimize client response to the training in real time. Due to the technical difficulties inherent in recording these frequencies, EEG investigators largely neglected this low energy until recently. As DC amplifiers improved, the slow frequencies became a signal of increasing interest to researchers. Research has demonstrated an important role for the infra-slow oscillations in clinical work. Positive clinical case outcomes suggest that a larger controlled study is warranted. The technical, clinical, and equipment requirements of the intervention make this form of neurofeedback unique in the pantheon of EEG biofeedback interventions.
View Full Paper →Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans
Learned enhancement of EEG frequency components in the lower beta range by means of biofeedback has been reported to alleviate attention deficit hyperactivity disorder (ADHD) symptoms. In order to elucidate frequency-specific behavioural effects and neurophysiological mediators, this study applied neurofeedback protocols to healthy volunteers, and assessed impact on behavioural and electrocortical attention measures. Operant enhancement of a 12-15Hz component was associated with reduction in commission errors and improved perceptual sensitivity on a continuous performance task (CPT), while the opposite relation was found for 15-18Hz enhancement. Both 12-15Hz and 15-18Hz enhancement were associated with significant increases in P300 event-related brain potential amplitudes in an auditory oddball task. These relations are interpreted as stemming from band-specific effects on perceptual and motor aspects of attention measures
View Full Paper →The effects of electrode placement upon EEG biofeedback training: the monopolar-bipolar controversy
Roles of tradition, convenience, and noise or artifact rejection are discussed with regard to the monopolar versus bipolar electrode placement controversy in electroencephalography (EEG). Particular emphasis is placed on the relevance to biofeedback. The crucial interactions between the differential amplifier, brain waves, and monopolar/bipolar placements are discussed. Through logical analysis and empirical observation, it is demonstrated how the very nature of the EEG's differential amplifiers must destroy those elements of brain activity which are common to the recording electrodes. Controlled experiments further illustrate the critical importance of electrode placements. Various methods, including preferred electrode placements, are presented to help resolve recording problems that frequently arise. It is concluded that there are serious implications for researchers, EEG clinicians, biofeedback providers, and their clients in preferring one type of electrode placement technique over the other. EEG recording accuracy is affected by this choice.
Ready to Optimize Your Brain?
Schedule a free consultation to discuss amplifier and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →