beta activity
Research Papers
Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress
Background: In this study we are using source localized neurofeedback to moderate tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network. Hypothesis: We hypothesize that up-training alpha and down-training beta and gamma activity in the posterior cingulate cortex has a moderating effect on tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network and other functionally connected brain areas. Methods: Fifty-eight patients with chronic tinnitus were included in the study. Twenty-three tinnitus patients received neurofeedback training of the posterior cingulate cortex with the aim of up-training alpha and down-training beta and gamma activity, while 17 patients underwent training of the lingual gyrus as a control situation. A second control group consisted of 18 tinnitus patients on a waiting list for future tinnitus treatment. Results: This study revealed that neurofeedback training of the posterior cingulate cortex results in a significant decrease of tinnitus related distress. No significant effect on neural activity of the target region could be obtained. However, functional and effectivity connectivity changes were demonstrated between remote brain regions or functional networks as well as by altering cross frequency coupling of the posterior cingulate cortex. Conclusion: This suggests that neurofeedback could remove the information, processed in beta and gamma, from the carrier wave, alpha, which transports the high frequency information and influences the salience attributed to the tinnitus sound. Based on the observation that much pathology is the result of an abnormal functional connectivity within and between neural networks various pathologies should be considered eligible candidates for the application of source localized EEG based neurofeedback training.
View Full Paper →Neurofeedback Treatment of Chronic Inpatient Schizophrenia
This is a study on the effect of neurofeedback on chronic inpatient complex paranoid schizophrenics. The purpose of this research was twofold: first, to determine the effects of the application of neurofeedback to very chronic cases of schizophrenia that had been resistant to years of inpatient medical and psychological treatment and second, to propose a connection paradigm of schizophrenia. The author obtained progress using neurofeedback with more than 70 hospital inpatients with chronic schizophrenia. Improvements were seen in the EEG patterns and in cognitive, affective and behavioral patterns that often resulted in successful release from the hospital to live in the community. A 2-year follow up found that positive changes were sustained. It is the author's impression that reinforcement of right parietal alpha and inhibiting frontal delta and fast beta activity obtained the best results.
View Full Paper →A controlled study of the effects of EEG biofeedback on cognition and behavior of children with attention deficit disorder and learning disabilities
Eighteen children with ADD/ADHD, some of whom were also LD, ranging in ages from 5 through 15 were randomly assigned to one of two conditions. The experimental condition consisted of 40 45-minute sessions of training in enhancing beta activity and suppressing theta activity, spaced over 6 months. The control condition, waiting list group, received no EEC biofeedback. No other psychological treatment or medication was administered to any subjects. All subjects were measured at pretreatment and at posttreatment on an IQ test and parent behavior rating scales for inattention, hyperactivity, and aggressive I defiant (oppositional) behaviors. At posttreatment the experimental group demonstrated a significant increase (mean of 9 points) on the K-Bit IQ Composite as compared to the control group (p < .05). The experimental group also significantly reduced inattentive behaviors as rated by parents (p < .05). The significant improvements in intellectual functioning and attentive behaviors might be explained as a result of the attentional enhancement affected by EEG biofeedback training. Further research utilizing improved data collection and analysis, more stringent control groups, and larger sample sizes are needed to support and replicate these findings
View Full Paper →EEG biofeedback for the enhancement of attentional processing in normal college students
College students diagnosed as free of any neurological or attention deficit disorder received EEG biofeedback to enhance beta (16-22 hertz) activity while simultaneously inhibiting high theta and low alpha (6-10 hertz) activity in order to evaluate improvements in attentional measures. Following short-term treatment (mean number of sessions=20), subjects were evaluated as either learners or non-learners based upon standard pre- versus post-treatment neurofeedback measures. Attention quotients taken from pre and post-treatment measurements using the Intermediate Visual and Auditory (IVA) Continuous Performance Test identified significant improvements in attentional measures in learners, while non-learners showed no significant improvements. Results suggest that some "normal" young adults can learn to increase EEG activity associated with improved attention. Twenty sessions, however, even for this population may represent the lower limit for achieving significant improvement.
View Full Paper →Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in TOVA scores, behavioral ratings, and WISC-R performance
A study with three component parts was performed to assess the effectiveness of neurofeedback treatment for Attention Deficit/Hyperactivity Disorder (ADHD). The subject pool consisted of 23 children and adolescents ranging in age from 8 to 19 years with a mean of 11.4 years who participated in a 2-to 3-month summer program of intensive neurofeedback training. Feedback was contingent on the production of 16-20 hertz (beta) activity in the absence of 4-8 hertz (theta) activity. Posttraining changes in EEG activity, T.O.V.A. performance, (ADDES) behavior ratings, and WISC-R performance were assessed. Part I indicated that subjects who successfully decreased theta activity showed significant improvement in T.O.V.A. performance; Part II revealed significant improvement in parent ratings following neurofeedback training; and Part III indicated significant increases in WISC-R scores following neurofeedback training. This study is significant in that it examines the effects of neurofeedback training on both objective and subjective measures under relatively controlled conditions. Our findings corroborate and extend previous research, indicating that neurofeedback training can be an appropriate and efficacious treatment for children with ADHD
View Full Paper →Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12-to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4–8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss beta activity and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →