brain-machine interface
Research Papers
Volitional Control of Brain Motor Activity and Its Therapeutic Potential
BACKGROUND: Neurofeedback training is a closed-loop neuromodulatory technique in which real-time feedback of brain activity and connectivity is provided to the participant for the purpose of volitional neural control. Through practice and reinforcement, such learning has been shown to facilitate measurable changes in brain function and behavior. OBJECTIVES: In this review, we examine how neurofeedback, coupled with motor imagery training, has the potential to improve or normalize motor function in neurological diseases such as Parkinson disease and chronic stroke. We will also explore neurofeedback in the context of brain-machine interfaces (BMIs), discussing both noninvasive and invasive methods which have been used to power external devices (eg, robot hand orthosis or exoskeleton) in the context of motor neurorehabilitation. CONCLUSIONS: The published literature provides mounting high-quality evidence that neurofeedback and BMI control may lead to clinically relevant changes in brain function and behavior.
View Full Paper →Pain Control by Co-adaptive Learning in a Brain-Machine Interface
Innovation in the field of brain-machine interfacing offers a new approach to managing human pain. In principle, it should be possible to use brain activity to directly control a therapeutic intervention in an interactive, closed-loop manner. But this raises the question as to whether the brain activity changes as a function of this interaction. Here, we used real-time decoded functional MRI responses from the insula cortex as input into a closed-loop control system aimed at reducing pain and looked for co-adaptive neural and behavioral changes. As subjects engaged in active cognitive strategies orientated toward the control system, such as trying to enhance their brain activity, pain encoding in the insula was paradoxically degraded. From a mechanistic perspective, we found that cognitive engagement was accompanied by activation of the endogenous pain modulation system, manifested by the attentional modulation of pain ratings and enhanced pain responses in pregenual anterior cingulate cortex and periaqueductal gray. Further behavioral evidence of endogenous modulation was confirmed in a second experiment using an EEG-based closed-loop system. Overall, the results show that implementing brain-machine control systems for pain induces a parallel set of co-adaptive changes in the brain, and this can interfere with the brain signals and behavior under control. More generally, this illustrates a fundamental challenge of brain decoding applications-that the brain inherently adapts to being decoded, especially as a result of cognitive processes related to learning and cooperation. Understanding the nature of these co-adaptive processes informs strategies to mitigate or exploit them.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss brain-machine interface and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →