cognitive processes
Research Papers
Brain training with neurofeedback in patients with mild cognitive impairment: a review study
Objective: The study aimed to establish the differences in the levels of adaptation, social support, and perceived family functionality according to sex, age, and school grade of a sample of 160 children and adolescents affected by floods in the Mojana sub-region of the Department of Sucre, Colombia.
View Full Paper →Evaluating Prefrontal Activation and Its Relationship with Cognitive and Emotional Processes by Means of Hemoencephalography (HEG)
The main aim of this study is to determine the efficacy of the method of diagnosis known as hemoencephalography (HEG), which measures hemodynamic changes in the prefrontal cortex by determining differences in oxygen flow to show patterns of neuronal activity. Of the 5 tests designed for this purpose, 2 are strictly cognitive, while the other 3 have primarily emotional or sensitive content. The tests were applied to a sample of 70 university students. The Wilcoxon nonparametric signed rank test was applied to test the paired differences between the HEG baseline result and the HEG result of the task. Results show, first, that the HEG method successfully determines oxygen flow to the prefrontal cortex and clearly differentiates the subject's baseline from HEG activation during the task (Wilcoxon, p < .05); second, that HEG results vary depending on the type of activity, whether cognitive (low emotional load) or emotional (high emotional load) in such a way that cognitive areas, those located higher in the cortex (dorsolateral prefrontal), show less activity during emotional tests and more activity during cognitive tests, thus associating higher areas (dorsolateral prefrontal) with cognition and deeper areas (medial temporal, medial prefrontal, and cingulate) with emotion. The HEG procedure is effective in detecting states or situations of ailment or suffering not always accompanied by evident external manifestations. Furthermore, the procedure can differentiate between cognitive and emotional processing. The HEG method can help diagnosis in clinical settings due to its ability to detect painful-feeling processing independently of both body and verbal language.
View Full Paper →Learned regulation of spatially localized brain activation using real-time fMRI
It is not currently known whether subjects can learn to voluntarily control activation in localized regions of their own brain using neuroimaging. Here, we show that subjects were able to learn enhanced voluntary control over task-specific activation in a chosen target region, the somatomotor cortex. During an imagined manual action task, subjects were provided with continuous direction regarding their cognitive processes. Subjects received feedback information about their current level of activation in a target region of interest (ROI) derived using real-time functional magnetic resonance imaging (rtfMRI), and they received automatically-adjusted instructions for the level of activation to achieve. Information was provided both as continously upated graphs and using a simple virtual reality interface that provided an image analog of the level of activation. Through training, subjects achieved an enhancement in their control over brain activation that was anatomically specific to the target ROI, the somatomotor cortex. The enhancement took place when rtfMRI-based training was provided, but not in a control group that received similar training without rtfMRI information, showing that the effect was not due to conventional, practice-based neural plasticity alone. Following training, using cognitive processes alone subjects could volitionally induce fMRI activation in the somatomotor cortex that was comparable in magnitude to the activation observed during actual movement. The trained subjects increased fMRI activation without muscle tensing, and were able to continue to control brain activation even when real-time fMRI information was no longer provided. These results show that rtfMRI information can be used to direct cognitive processes, and that subjects are able to learn volitionally regulate activation in an anatomically-targeted brain region, surpassing the task-driven activation present before training.
View Full Paper →EEG Measures of Cerebral Asymmetry: Conceptual and Methodological Issues
An overview of the use of EEG to assess hemispheric differences in cognitive and affective processes is presented. Some of the advantages of using EEG to assess asymmetric hemispheric differences in the study of complex mental activity are described. Following this brief introduction, two conceptual issues which are central to studies of EEG asymmetries are introduced: (1) the distinction between hemispheric specialization and activation, and (2) the importance of rostral-caudal differences for the understanding of both specialization and activation. Three methodological issues in the use of EEG to assess hemispheric differences are then presented: (1) the use of asymmetry metrics, (2) muscle artifact, and (3) appropriate reference electrode location. Finally, some empirical examples of using EEG to assess affective and cognitive processes which illustrate these conceptual and methodological issues are described.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss cognitive processes and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →