EEG frequency analysis
Research Papers
The effects of neurofeedback training on the spectral topography of the electroencephalogram
Objective: To investigate the impact of EEG frequency band biofeedback (neurofeedback) training on spectral EEG topography, which is presumed to mediate cognitive-behavioural training effects. In order to assess the effect of commonly applied neurofeedback protocols on spectral EEG composition, two studies involving healthy participants were carried out. Methods: In Experiment 1, subjects were trained on low beta (12–15 Hz), beta1 (15–18 Hz), and alpha/theta (8–11 Hz/5–8 Hz) protocols, with spectral resting EEG assessed before and after training. The specific associations between learning indices of each individual training protocol and changes in absolute and relative spectral EEG topography was assessed by means of partial correlation analyses. Results of Experiment 1 served to generate hypotheses for Experiment 2, where subjects were randomly allocated to independent groups of low beta, beta1, and alpha/theta training. Spectral resting EEG measures were contrasted prior and subsequent to training within each group. Results: Only few associations between particular protocols and spectral EEG changes were found to be consistent across the two studies, and these did not correspond to expectations based on the operant contingencies trained. Low-beta training was found to be somewhat associated with reduced post-training low-beta activity, while more reliably, alpha/theta training was associated with reduced relative frontal beta band activity. Conclusions: The results document that neurofeedback training of frequency components does affect spectral EEG topography in healthy subjects, but that these effects do not necessarily correspond to either the frequencies or the scalp locations addressed by the training contingencies. The association between alpha/theta training and replicable reductions in frontal beta activity constitutes novel empirical neurophysiological evidence supporting inter alia the training's purported role in reducing agitation and anxiety. Significance: These results underline the complexity of the neural dynamics involved EEG self-regulation and emphasize the need for empirical validation of predictable neurophysiological outcomes of training EEG biofeedback protocols.
View Full Paper →Test-retest reliability in EEG frequency analysis
This study was performed to gain a better understanding of EEG frequency analysis test-retest reliability in normal healthy adults, and to evaluate factors which could influence the measured inter-record differences. Nineteen subjects underwent serial EEG recordings at 5 min and 12–16 week intervals. Records were visually edited using a standardized protocol, and FFT frequency analysis performed on segments of 60, 40, or 20 sec total length. Correlation coefficients for broad band features averaged 0.92 over the 5 min retest interval and 0.84 over the 12–16 week interval. There was essentially no difference between correlation coefficients of absolute and relative power features. Coefficients based on 60 sec records were marginally higher than those of 40 or 20 sec records. On the other hand, test-retest percent differences were typically lower for relative as opposed to absolute power features, and 60 sec records showed consistently lower percent differences than did 40 or particularly 20 sec records. Peak alpha frequency and mean frequency were the most stable EEG features at either interval. Montage had significant effects on test-retest differences at the 12–16 week interval. A significant association between intra-record and inter-record variability could not be demonstrated.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss eeg frequency analysis and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →