Emotions
Research Papers
Showing 6 of 15Real-time fMRI neurofeedback as a new treatment for psychiatric disorders: A meta-analysis
Neurofeedback using real-time functional MRI (RT-fMRI-NF) is an innovative technique that allows to voluntarily modulate a targeted brain response and its associated behavior. Despite promising results in the current literature, its effectiveness on symptoms management in psychiatric disorders is not yet clearly demonstrated. Here, we provide 1) a state-of-art qualitative review of RT-fMRI-NF studies aiming at alleviating clinical symptoms in a psychiatric population; 2) a quantitative evaluation (meta-analysis) of RT-fMRI-NF effectiveness on various psychiatric disorders and 3) methodological suggestions for future studies. Thirty-one clinical trials focusing on psychiatric disorders were included and categorized according to standard diagnostic categories. Among the 31 identified studies, 22 consisted of controlled trials, of which only eight showed significant clinical improvement in the experimental vs. control group after the training. Nine studies found an effect at follow-up on ADHD symptoms, emotion dysregulation, facial emotion processing, depressive symptoms, hallucinations, psychotic symptoms, and specific phobia. Within-group meta-analysis revealed large effects of the NF training on depressive symptoms right after the training (g = 0.81, p < 0.01) and at follow-up (g = 1.19, p < 0.01), as well as medium effects on anxiety (g = 0.44, p = 0.01) and emotion regulation (g = 0.48, p < 0.01). Between-group meta-analysis showed a medium effect on depressive symptoms (g = 0.49, p < 0.01) and a large effect on anxiety (g = 0.77, p = 0.01). However, the between-studies heterogeneity is very high. The use of RT-fMRI-NF as a treatment for psychiatric symptoms is promising, however, further double-blind, multicentric, randomized-controlled trials are warranted.
View Full Paper →Brain circuits for pain and its treatment
Pain is a multidimensional experience with sensory-discriminative, affective-motivational, and cognitive-evaluative components. Pain aversiveness is one principal cause of suffering for patients with chronic pain, motivating research and drug development efforts to investigate and modulate neural activity in the brain’s circuits encoding pain unpleasantness. Here, we review progress in understanding the organization of emotion, motivation, cognition, and descending modulation circuits for pain perception. We describe the molecularly defined neuron types that collectively shape pain multidimensionality and its aversive quality. We also review how pharmacological, stimulation, neurofeedback, surgical, and cognitive-behavioral interventions alter activity in these circuits to relieve chronic pain.
View Full Paper →Hippocampal volume recovery with real-time functional MRI amygdala neurofeedback emotional training for posttraumatic stress disorder
BACKGROUND: Small hippocampal volume is a prevalent neurostructural abnormality in posttraumatic stress disorder (PTSD). However, whether the hippocampal atrophy is the cause of disease symptoms or a pre-existing risk factor and whether it is a reversible alteration or a permanent trait are unclear. The trait- or state-dependent alteration could also differ among the hippocampal subfields. METHODS: The study examined the longitudinal hippocampal volume changes due to positive emotional training with left amygdala (LA) real-time fMRI neurofeedback (rtfMRI-nf) in combat veterans with PTSD. The participants were trained to increase the neurofeedback signal from LA (experimental group, N = 20) or brain region not involved in emotion processing (control group, N = 9) by recalling a positive autobiographical memory. The pre- and post-training structural MRI brain images were processed with FreeSurfer to evaluate the hippocampal subfield volumes. Hippocampal volumes for healthy controls (N = 43) were also examined to evaluate the baseline abnormality in PTSD. RESULTS: A significant group difference in volume change was found in the left CA1 head region. This region had the most significant volume reduction at the baseline in PTSD. The experimental group showed a significant volume increase, while the control group showed a significant volume decrease in this region. The volume change in the control group negatively correlated with interval days between the scans. LIMITATIONS: A cognitive improvement due to the hippocampal volume increase could not be found with symptom scales. CONCLUSIONS: RtfMRI-nf positive emotional training increased the hippocampus volume among people with PTSD, suggesting that hippocampal atrophy in PTSD is modifiable.
View Full Paper →Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASD
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is often accompanied by impaired emotion regulation (ER). There has been increasing emphasis on developing evidence-based approaches to improve ER in ASD. Electroencephalography (EEG) has shown success in reducing ASD symptoms when used in neurofeedback-based interventions. Also, certain EEG components are associated with ER. Our overarching goal is to develop a technology that will use EEG to monitor real-time changes in ER and perform intervention based on these changes. As a first step, an EEG-based brain computer interface that is based on an Affective Posner task was developed to identify patterns associated with ER on a single trial basis, and EEG data collected from 21 individuals with ASD. Accordingly, our aim in this study is to investigate EEG features that could differentiate between distress and non-distress conditions. Specifically, we investigate if the EEG time-locked to the visual feedback presentation could be used to classify between WIN (non-distress) and LOSE (distress) conditions in a game with deception. Results showed that the extracted EEG features could differentiate between WIN and LOSE conditions (average accuracy of 81%), LOSE and rest-EEG conditions (average accuracy 94.8%), and WIN and rest-EEG conditions (average accuracy 94.9%).
View Full Paper →Rt-fMRI neurofeedback-guided cognitive reappraisal training modulates amygdala responsivity in posttraumatic stress disorder
BACKGROUND: Traumatic experiences are associated with neurofunctional dysregulations in key regions of the emotion regulation circuits. In particular, amygdala responsivity to negative stimuli is exaggerated while engagement of prefrontal regulatory control regions is attenuated. Successful application of emotion regulation (ER) strategies may counteract this disbalance, however, application of learned strategies in daily life is hampered in individuals afflicted by posttraumatic stress disorder (PTSD). We hypothesized that a single session of real-time fMRI (rtfMRI) guided upregulation of prefrontal regions during an emotion regulation task enhances self-control during exposure to negative stimuli and facilitates transfer of the learned ER skills to daily life. METHODS: In a cross-over design, individuals with a PTSD diagnosis after a single traumatic event (n = 20) according to DSM-IV-TR criteria and individuals without a formal psychiatric diagnosis (n = 21) underwent a cognitive reappraisal training. In randomized order, all participants completed two rtfMRI neurofeedback (NF) runs targeting the left lateral prefrontal cortex (lPFC) and two control runs without NF (NoNF) while using cognitive reappraisal to reduce their emotional response to negative scenes. During the NoNF runs, two %%-signs were displayed instead of the two-digit feedback (FB) to achieve a comparable visual stimulation. The project aimed at defining the clinical potential of the training according to three success markers: (1) NF induced changes in left lateral prefrontal cortex and bilateral amygdala activity during the regulation of aversive scenes compared to cognitive reappraisal alone (primary registered outcome), (2) associated changes on the symptomatic and behavioral level such as indicated by PTSD symptom severity and affect ratings, (3) clinical utility such as indicated by perceived efficacy, acceptance, and transfer to daily life measured four weeks after the training. RESULTS: In comparison to the reappraisal without feedback, a neurofeedback-specific decrease in the left lateral PFC (d = 0.54) alongside an attenuation of amygdala responses (d = 0.33) emerged. Reduced amygdala responses during NF were associated with symptom improvement (r = -0.42) and less negative affect (r = -0.63) at follow-up. The difference in symptom scores exceeds requirements for a minimal clinically important difference and corresponds to a medium effect size (d = 0.64). Importantly, 75% of individuals with PTSD used the strategies in daily life during a one-month follow-up period and perceived the training as efficient. CONCLUSION: Our findings suggest beneficial effects of the NF training indicated by reduced amygdala responses that were associated with improved symptom severity and affective state four weeks after the NF training as well as patient-centered perceived control during the training, helpfulness and application of strategies in daily life. However, reduced prefrontal involvement was unexpected. The study suggests good tolerability of the training protocol and potential for clinical use in the treatment of PTSD.
View Full Paper →Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review
Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss emotions and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →