Equipment Design

Research Papers

Effects of an Integrated Neurofeedback System with Dry Electrodes: EEG Acquisition and Cognition Assessment

Pei, Guangying, Wu, Jinglong, Chen, Duanduan, Guo, Guoxin, Liu, Shuozhen, Hong, Mingxuan, Yan, Tianyi (2018) · Sensors (Basel, Switzerland)

Electroencephalogram (EEG) neurofeedback improves cognitive capacity and behaviors by regulating brain activity, which can lead to cognitive enhancement in healthy people and better rehabilitation in patients. The increased use of EEG neurofeedback highlights the urgent need to reduce the discomfort and preparation time and increase the stability and simplicity of the system's operation. Based on brain-computer interface technology and a multithreading design, we describe a neurofeedback system with an integrated design that incorporates wearable, multichannel, dry electrode EEG acquisition equipment and cognitive function assessment. Then, we evaluated the effectiveness of the system in a single-blind control experiment in healthy people, who increased the alpha frequency band power in a neurofeedback protocol. We found that upregulation of the alpha power density improved working memory following short-term training (only five training sessions in a week), while the attention network regulation may be related to other frequency band activities, such as theta and beta. Our integrated system will be an effective neurofeedback training and cognitive function assessment system for personal and clinical use.

View Full Paper →

Neurofeedback Control in Parkinsonian Patients Using Electrocorticography Signals Accessed Wirelessly With a Chronic, Fully Implanted Device

Khanna, Preeya, Swann, Nicole C., de Hemptinne, Coralie, Miocinovic, Svjetlana, Miller, Andrew, Starr, Philip A., Carmena, Jose M. (2017) · IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society

Parkinson's disease (PD) is characterized by motor symptoms such as rigidity and bradykinesia that prevent normal movement. Beta band oscillations (13-30 Hz) in neural local field potentials (LFPs) have been associated with these motor symptoms. Here, three PD patients implanted with a therapeutic deep brain neural stimulator that can also record and wirelessly stream neural data played a neurofeedback game where they modulated their beta band power from sensorimotor cortical areas. Patients' beta band power was streamed in real-time to update the position of a cursor that they tried to drive into a cued target. After playing the game for 1-2 hours each, all three patients exhibited above chance-level performance regardless of subcortical stimulation levels. This study, for the first time, demonstrates using an invasive neural recording system for at-home neurofeedback training. Future work will investigate chronic neurofeedback training as a potentially therapeutic tool for patients with neurological disorders.

View Full Paper →

Bluetooth Communication Interface for EEG Signal Recording in Hyperbaric Chambers

Pastena, Lucio, Formaggio, Emanuela, Faralli, Fabio, Melucci, Massimo, Rossi, Marco, Gagliardi, Riccardo, Ricciardi, Lucio, Storti, Silvia F. (2015) · IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society

Recording biological signals inside a hyperbaric chamber poses technical challenges (the steel walls enclosing it greatly attenuate or completely block the signals as in a Faraday cage), practical (lengthy cables creating eddy currents), and safety (sparks hazard from power supply to the electronic apparatus inside the chamber) which can be overcome with new wireless technologies. In this technical report we present the design and implementation of a Bluetooth system for electroencephalographic (EEG) recording inside a hyperbaric chamber and describe the feasibility of EEG signal transmission outside the chamber. Differently from older systems, this technology allows the online recording of amplified signals, without interference from eddy currents. In an application of this technology, we measured EEG activity in professional divers under three experimental conditions in a hyperbaric chamber to determine how oxygen, assumed at a constant hyperbaric pressure of 2.8 ATA , affects the bioelectrical activity. The EEG spectral power estimated by fast Fourier transform and the cortical sources of the EEG rhythms estimated by low-resolution brain electromagnetic analysis were analyzed in three different EEG acquisitions: breathing air at sea level; breathing oxygen at a simulated depth of 18 msw, and breathing air at sea level after decompression.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss equipment design and how neurofeedback training can help

* Required fields