Exercise Therapy
Research Papers
Efficacy of Biofeedback for Medical Conditions: an Evidence Map
BACKGROUND: Biofeedback is increasingly used to treat clinical conditions in a wide range of settings; however, evidence supporting its use remains unclear. The purpose of this evidence map is to illustrate the conditions supported by controlled trials, those that are not, and those in need of more research. METHODS: We searched multiple data sources (MEDLINE, PsycINFO, CINAHL, Epistemonikos, and EBM Reviews through September 2018) for good-quality systematic reviews examining biofeedback for clinical conditions. We included the highest quality, most recent review representing each condition and included only controlled trials from those reviews. We relied on quality ratings reported in included reviews. Outcomes of interest were condition-specific, secondary, and global health outcomes, and harms. For each review, we computed confidence ratings and categorized reported findings as no effect, unclear, or insufficient; evidence of a potential positive effect; or evidence of a positive effect. We present our findings in the form of evidence maps. RESULTS: We included 16 good-quality systematic reviews examining biofeedback alone or as an adjunctive intervention. We found clear, consistent evidence across a large number of trials that biofeedback can reduce headache pain and can provide benefit as adjunctive therapy to men experiencing urinary incontinence after a prostatectomy. Consistent evidence across fewer trials suggests biofeedback may improve fecal incontinence and stroke recovery. There is insufficient evidence to draw conclusions about effects for most conditions including bruxism, labor pain, and Raynaud's. Biofeedback was not beneficial for urinary incontinence in women, nor for hypertension management, but these conclusions are limited by small sample sizes and methodologic limitations of these studies. DISCUSSION: Available evidence suggests that biofeedback is effective for improving urinary incontinence after prostatectomy and headache, and may provide benefit for fecal incontinence and balance and stroke recovery. Further controlled trials across a wide range of conditions are indicated.
View Full Paper →Mixed exercise training for adults with fibromyalgia
BACKGROUND: Exercise training is commonly recommended for individuals with fibromyalgia. This review is one of a series of reviews about exercise training for fibromyalgia that will replace the review titled "Exercise for treating fibromyalgia syndrome", which was first published in 2002. OBJECTIVES: To evaluate the benefits and harms of mixed exercise training protocols that include two or more types of exercise (aerobic, resistance, flexibility) for adults with fibromyalgia against control (treatment as usual, wait list control), non exercise (e.g. biofeedback), or other exercise (e.g. mixed versus flexibility) interventions.Specific comparisons involving mixed exercise versus other exercises (e.g. resistance, aquatic, aerobic, flexibility, and whole body vibration exercises) were not assessed. SEARCH METHODS: We searched the Cochrane Library, MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Thesis and Dissertations Abstracts, the Allied and Complementary Medicine Database (AMED), the Physiotherapy Evidence Databese (PEDro), Current Controlled Trials (to 2013), WHO ICTRP, and ClinicalTrials.gov up to December 2017, unrestricted by language, to identify all potentially relevant trials. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in adults with a diagnosis of fibromyalgia that compared mixed exercise interventions with other or no exercise interventions. Major outcomes were health-related quality of life (HRQL), pain, stiffness, fatigue, physical function, withdrawals, and adverse events. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, extracted data, and assessed risk of bias and the quality of evidence for major outcomes using the GRADE approach. MAIN RESULTS: We included 29 RCTs (2088 participants; 98% female; average age 51 years) that compared mixed exercise interventions (including at least two of the following: aerobic or cardiorespiratory, resistance or muscle strengthening exercise, and flexibility exercise) versus control (e.g. wait list), non-exercise (e.g. biofeedback), and other exercise interventions. Design flaws across studies led to selection, performance, detection, and selective reporting biases. We prioritised the findings of mixed exercise compared to control and present them fully here.Twenty-one trials (1253 participants) provided moderate-quality evidence for all major outcomes but stiffness (low quality). With the exception of withdrawals and adverse events, major outcome measures were self-reported and expressed on a 0 to 100 scale (lower values are best, negative mean differences (MDs) indicate improvement; we used a clinically important difference between groups of 15% relative difference). Results for mixed exercise versus control show that mean HRQL was 56 and 49 in the control and exercise groups, respectively (13 studies; 610 participants) with absolute improvement of 7% (3% better to 11% better) and relative improvement of 12% (6% better to 18% better). Mean pain was 58.6 and 53 in the control and exercise groups, respectively (15 studies; 832 participants) with absolute improvement of 5% (1% better to 9% better) and relative improvement of 9% (3% better to 15% better). Mean fatigue was 72 and 59 points in the control and exercise groups, respectively (1 study; 493 participants) with absolute improvement of 13% (8% better to 18% better) and relative improvement of 18% (11% better to 24% better). Mean stiffness was 68 and 61 in the control and exercise groups, respectively (5 studies; 261 participants) with absolute improvement of 7% (1% better to 12% better) and relative improvement of 9% (1% better to 17% better). Mean physical function was 49 and 38 in the control and exercise groups, respectively (9 studies; 477 participants) with absolute improvement of 11% (7% better to 15% better) and relative improvement of 22% (14% better to 30% better). Pooled analysis resulted in a moderate-quality risk ratio for all-cause withdrawals with similar rates across groups (11 per 100 and 12 per 100 in the control and intervention groups, respectively) (19 studies; 1065 participants; risk ratio (RR) 1.02, 95% confidence interval (CI) 0.69 to 1.51) with an absolute change of 1% (3% fewer to 5% more) and a relative change of 11% (28% fewer to 47% more). Across all 21 studies, no injuries or other adverse events were reported; however some participants experienced increased fibromyalgia symptoms (pain, soreness, or tiredness) during or after exercise. However due to low event rates, we are uncertain of the precise risks with exercise. Mixed exercise may improve HRQL and physical function and may decrease pain and fatigue; all-cause withdrawal was similar across groups, and mixed exercises may slightly reduce stiffness. For fatigue, physical function, HRQL, and stiffness, we cannot rule in or out a clinically relevant change, as the confidence intervals include both clinically important and unimportant effects.We found very low-quality evidence on long-term effects. In eight trials, HRQL, fatigue, and physical function improvement persisted at 6 to 52 or more weeks post intervention but improvements in stiffness and pain did not persist. Withdrawals and adverse events were not measured.It is uncertain whether mixed versus other non-exercise or other exercise interventions improve HRQL and physical function or decrease symptoms because the quality of evidence was very low. The interventions were heterogeneous, and results were often based on small single studies. Adverse events with these interventions were not measured, and thus uncertainty surrounds the risk of adverse events. AUTHORS' CONCLUSIONS: Compared to control, moderate-quality evidence indicates that mixed exercise probably improves HRQL, physical function, and fatigue, but this improvement may be small and clinically unimportant for some participants; physical function shows improvement in all participants. Withdrawal was similar across groups. Low-quality evidence suggests that mixed exercise may slightly improve stiffness. Very low-quality evidence indicates that we are 'uncertain' whether the long-term effects of mixed exercise are maintained for all outcomes; all-cause withdrawals and adverse events were not measured. Compared to other exercise or non-exercise interventions, we are uncertain about the effects of mixed exercise because we found only very low-quality evidence obtained from small, very heterogeneous trials. Although mixed exercise appears to be well tolerated (similar withdrawal rates across groups), evidence on adverse events is scarce, so we are uncertain about its safety. We downgraded the evidence from these trials due to imprecision (small trials), selection bias (e.g. allocation), blinding of participants and care providers or outcome assessors, and selective reporting.
View Full Paper →Non-pharmacological interventions for chronic pain in multiple sclerosis
BACKGROUND: Chronic pain is common and significantly impacts on the lives of persons with multiple sclerosis (pwMS). Various types of non-pharmacological interventions are widely used, both in hospital and ambulatory/mobility settings to improve pain control in pwMS, but the effectiveness and safety of many non-pharmacological modalities is still unknown. OBJECTIVES: This review aimed to investigate the effectiveness and safety of non-pharmacological therapies for the management of chronic pain in pwMS. Specific questions to be addressed by this review include the following.Are non-pharmacological interventions (unidisciplinary and/or multidisciplinary rehabilitation) effective in reducing chronic pain in pwMS?What type of non-pharmacological interventions (unidisciplinary and/or multidisciplinary rehabilitation) are effective (least and most effective) and in what setting, in reducing chronic pain in pwMS? SEARCH METHODS: A literature search was performed using the specialised register of the Cochrane MS and Rare Diseases of the Central Nervous System Review Group, using the Cochrane MS Group Trials Register which contains CENTRAL, MEDLINE, Embase, CINAHL, LILACUS, Clinical trials.gov and the World Health Organization International Clinical Trials Registry Platform on 10 December 2017. Handsearching of relevant journals and screening of reference lists of relevant studies was carried out. SELECTION CRITERIA: All published randomised controlled trials (RCTs)and cross-over studies that compared non-pharmacological therapies with a control intervention for managing chronic pain in pwMS were included. Clinical controlled trials (CCTs) were eligible for inclusion. DATA COLLECTION AND ANALYSIS: All three review authors independently selected studies, extracted data and assessed the methodological quality of the studies using the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) tool for best-evidence synthesis. Pooling data for meta-analysis was not possible due to methodological, clinical and statistically heterogeneity of the included studies. MAIN RESULTS: Overall, 10 RCTs with 565 participants which investigated different non-pharmacological interventions for the management of chronic pain in MS fulfilled the review inclusion criteria. The non-pharmacological interventions evaluated included: transcutaneous electrical nerve stimulation (TENS), psychotherapy (telephone self-management, hypnosis and electroencephalogram (EEG) biofeedback), transcranial random noise stimulation (tRNS), transcranial direct stimulation (tDCS), hydrotherapy (Ai Chi) and reflexology.There is very low-level evidence for the use of non-pharmacological interventions for chronic pain such as TENS, Ai Chi, tDCS, tRNS, telephone-delivered self-management program, EEG biofeedback and reflexology in pain intensity in pwMS. Although there were improved changes in pain scores and secondary outcomes (such as fatigue, psychological symptoms, spasm in some interventions), these were limited by methodological biases within the studies. AUTHORS' CONCLUSIONS: Despite the use of a wide range of non-pharmacological interventions for the treatment of chronic pain in pwMS, the evidence for these interventions is still limited or insufficient, or both. More studies with robust methodology and greater numbers of participants are needed to justify the effect of these interventions for the management of chronic pain in pwMS.
View Full Paper →Visual biofeedback training reduces quantitative drugs index scores associated with fall risk
OBJECTIVE: Drugs increase fall risk and decrease performance on balance and mobility tests. Conversely, whether biofeedback training to reduce fall risk also decreases scores on a published drug-based fall risk index has not been documented. Forty-eight community-dwelling older adults underwent either treadmill gait training plus visual feedback (+VFB), or walked on a treadmill without feedback. The Quantitative Drug Index (QDI) was derived from each participant's drug list and is based upon all cause drug-associated fall risk. Analysis of covariance assessed changes in the QDI during the study, and data is presented as mean ± standard error of the mean. RESULTS: The QDI scores decreased significantly (p = 0.031) for participants receiving treadmill gait training +VFB (- 0.259 ± 0.207), compared to participants who walked on the treadmill without VFB (0.463 ± 0.246). Changes in participants QDI scores were dependent in part upon their age, which was a significant covariate (p = 0.007). These preliminary results demonstrate that rehabilitation to reduce fall risk may also decrease use of drugs associated with falls. Determination of which drugs or drug classes that contribute to the reduction in QDI scores for participants receiving treadmill gait training +VFB, compared to treadmill walking only, will require a larger participant investigation. Trial Registration ISRNCT01690611, ClinicalTrials.gov #366151-1, initial 9/24/2012, completed 4/21/2016.
View Full Paper →An RCT into the effects of neurofeedback on neurocognitive functioning compared to stimulant medication and physical activity in children with ADHD
Neurofeedback (NFB) is a potential alternative treatment for children with ADHD that aims to optimize brain activity. Whereas most studies into NFB have investigated behavioral effects, less attention has been paid to the effects on neurocognitive functioning. The present randomized controlled trial (RCT) compared neurocognitive effects of NFB to (1) optimally titrated methylphenidate (MPH) and (2) a semi-active control intervention, physical activity (PA), to control for non-specific effects. Using a multicentre three-way parallel group RCT design, children with ADHD, aged 7-13, were randomly allocated to NFB (n = 39), MPH (n = 36) or PA (n = 37) over a period of 10-12 weeks. NFB comprised theta/beta training at CZ. The PA intervention was matched in frequency and duration to NFB. MPH was titrated using a double-blind placebo controlled procedure to determine the optimal dose. Neurocognitive functioning was assessed using parameters derived from the auditory oddball-, stop-signal- and visual spatial working memory task. Data collection took place between September 2010 and March 2014. Intention-to-treat analyses showed improved attention for MPH compared to NFB and PA, as reflected by decreased response speed during the oddball task [η p2 = 0.21, p < 0.001], as well as improved inhibition, impulsivity and attention, as reflected by faster stop signal reaction times, lower commission and omission error rates during the stop-signal task (range η p2 = 0.09-0.18, p values <0.008). Working memory improved over time, irrespective of received treatment (η p2 = 0.17, p < 0.001). Overall, stimulant medication showed superior effects over NFB to improve neurocognitive functioning. Hence, the findings do not support theta/beta training applied as a stand-alone treatment in children with ADHD.
View Full Paper →Balance and Gait Training With Augmented Feedback Improves Balance Confidence in People With Parkinson's Disease: A Randomized Controlled Trial
Background Fear of falling has been identified as an important and independent fall-risk predictor in patients with Parkinson's disease (PD). However, there are inconsistent findings on the effects of balance and gait training on balance confidence. Objective To explore whether balance and gait training with augmented feedback can enhance balance confidence in PD patients immediately after treatment and at 3- and 12-month follow-ups. Methods A total of 51 PD patients were randomly assigned to a balance and gait training (BAL) group or to an active control (CON) group. The BAL group received balance and gait training with augmented feedback, whereas CON participants received lower-limb strength training for 12 weeks. Outcome measures included Activities-Specific Balance Confidence (ABC) Scale, limits-of-stability test, single-leg-stance test, and spatiotemporal gait characteristics. All tests were administered before intervention (Pre), immediately after training (Post), and at 3 months (Post3m) and 12 months (Post12m) after treatment completion. Results The ABC score improved marginally at Post and significantly at Post3m and Post12m only in the BAL group (P < .017). Both participant groups increased their end point excursion at Post, but only the BAL group maintained the improvement at Post3m. The BAL group maintained significantly longer time-to-loss-of-balance during the single-leg stance test than the CON group at Post3m and Post12m (P < .05). For gait characteristics, both participant groups increased gait velocity, but only the BAL group increased stride length at Post, Post3m, and Post12m (P < .017). Conclusions Positive findings from this study provide evidence that BAL with augmented feedback could enhance balance confidence and balance and gait performance in patients with PD.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss exercise therapy and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →