feedback

Research Papers

Showing 6 of 15

Effect of BCI-Controlled Pedaling Training System With Multiple Modalities of Feedback on Motor and Cognitive Function Rehabilitation of Early Subacute Stroke Patients

Yuan, Ziwen, Peng, Yu, Wang, Lisha, Song, Siming, Chen, Shi, Yang, Liu, Liu, Huanhuan, Wang, Haochong, Shi, Gaige, Han, Chengcheng, Cammon, Jared A., Zhang, Yingchun, Qiao, Jin, Wang, Gang (2021) · IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society

Brain-computer interfaces (BCIs) are currently integrated into traditional rehabilitation interventions after stroke. Although BCIs bring many benefits to the rehabilitation process, their effects are limited since many patients cannot concentrate during training. Despite this outcome post-stroke motor-attention dual-task training using BCIs has remained mostly unexplored. This study was a randomized placebo-controlled blinded-endpoint clinical trial to investigate the effects of a BCI-controlled pedaling training system (BCI-PT) on the motor and cognitive function of stroke patients during rehabilitation. A total of 30 early subacute ischemic stroke patients with hemiplegia and cognitive impairment were randomly assigned to the BCI-PT or traditional pedaling training. We used single-channel Fp1 to collect electroencephalography data and analyze the attention index. The BCI-PT system timely provided visual, auditory, and somatosensory feedback to enhance the patient's participation to pedaling based on the real-time attention index. After 24 training sessions, the attention index of the experimental group was significantly higher than that of the control group. The lower limbs motor function (FMA-L) increased by an average of 4.5 points in the BCI-PT group and 2.1 points in the control group (P = 0.022) after treatments. The difference was still significant after adjusting for the baseline indicators ( β = 2.41 , 95%CI: 0.48-4.34, P = 0.024). We found that BCI-PT significantly improved the patient's lower limb motor function by increasing the patient's participation. (clinicaltrials.gov: NCT04612426).

View Full Paper →

Medical education and distrust modulate the response of insular-cingulate network and ventral striatum in pain diagnosis

Dirupo, Giada, Totaro, Sabrina, Richard, Jeanne, Corradi-Dell'Acqua, Corrado (2021) · eLife

Healthcare providers often underestimate patients' pain, sometimes even when aware of their reports. This could be the effect of experience reducing sensitivity to others pain, or distrust toward patients' self-evaluations. Across multiple experiments (375 participants), we tested whether senior medical students differed from younger colleagues and lay controls in the way they assess people's pain and take into consideration their feedback. We found that medical training affected the sensitivity to pain faces, an effect shown by the lower ratings and highlighted by a decrease in neural response of the insula and cingulate cortex. Instead, distrust toward the expressions' authenticity affected the processing of feedbacks, by decreasing activity in the ventral striatum whenever patients' self-reports matched participants' evaluations, and by promoting strong reliance on the opinion of other doctors. Overall, our study underscores the multiple processes which might influence the evaluation of others' pain at the early stages of medical career.

View Full Paper →

Home-based Rehabilitation With A Novel Digital Biofeedback System versus Conventional In-person Rehabilitation after Total Knee Replacement: a feasibility study

Correia, Fernando Dias, Nogueira, André, Magalhães, Ivo, Guimarães, Joana, Moreira, Maria, Barradas, Isabel, Teixeira, Laetitia, Tulha, José, Seabra, Rosmaninho, Lains, Jorge, Bento, Virgilio (2018) · Scientific Reports

In-person home-based rehabilitation and telerehabilitation can be as effective as clinic-based rehabilitation after total knee arthroplasty (TKA), but require heavy logistics and are highly dependent on human supervision. New technologies that allow independent home-based rehabilitation without constant human supervision may help solve this problem. This was a single-center, feasibility study comparing a digital biofeedback system that meets these needs against conventional in-person home-based rehabilitation after TKA over an 8-week program. Primary outcome was the change in the Timed Up and Go score between the end of the program and baseline. Fifty-nine patients completed the study (30 experimental group; 29 conventional rehabilitation). The study demonstrated a superiority of the experimental group for all outcomes. Adverse events were similar in both groups. This is the first study to demonstrate that a digital rehabilitation solution can achieve better outcomes than conventional in-person rehabilitation, while less demanding in terms of human resources.

View Full Paper →

Balance and Gait Training With Augmented Feedback Improves Balance Confidence in People With Parkinson's Disease: A Randomized Controlled Trial

Shen, Xia, Mak, Margaret K. Y. (2014) · Neurorehabilitation and Neural Repair

Background Fear of falling has been identified as an important and independent fall-risk predictor in patients with Parkinson's disease (PD). However, there are inconsistent findings on the effects of balance and gait training on balance confidence. Objective To explore whether balance and gait training with augmented feedback can enhance balance confidence in PD patients immediately after treatment and at 3- and 12-month follow-ups. Methods A total of 51 PD patients were randomly assigned to a balance and gait training (BAL) group or to an active control (CON) group. The BAL group received balance and gait training with augmented feedback, whereas CON participants received lower-limb strength training for 12 weeks. Outcome measures included Activities-Specific Balance Confidence (ABC) Scale, limits-of-stability test, single-leg-stance test, and spatiotemporal gait characteristics. All tests were administered before intervention (Pre), immediately after training (Post), and at 3 months (Post3m) and 12 months (Post12m) after treatment completion. Results The ABC score improved marginally at Post and significantly at Post3m and Post12m only in the BAL group (P < .017). Both participant groups increased their end point excursion at Post, but only the BAL group maintained the improvement at Post3m. The BAL group maintained significantly longer time-to-loss-of-balance during the single-leg stance test than the CON group at Post3m and Post12m (P < .05). For gait characteristics, both participant groups increased gait velocity, but only the BAL group increased stride length at Post, Post3m, and Post12m (P < .017). Conclusions Positive findings from this study provide evidence that BAL with augmented feedback could enhance balance confidence and balance and gait performance in patients with PD.

View Full Paper →

Direct Instrumental Conditioning of Neural Activity Using Functional Magnetic Resonance Imaging-Derived Reward Feedback

Bray, Signe, Shimojo, Shinsuke, O'Doherty, John P. (2007) · The Journal of Neuroscience

Successful learning is often contingent on feedback. In instrumental conditioning, an animal or human learns to perform specific responses to obtain reward. Instrumental conditioning is often used by behavioral psychologists to train an animal (or human) to produce a desired behavior. Shaping involves reinforcing those behaviors, which in a stepwise manner are successively closer to the desired behavior until the desired behavior is reached. Here, we aimed to extend this traditional approach to directly shape neural activity instead of overt behavior. To achieve this, we scanned 22 human subjects with functional magnetic resonance imaging and performed image processing in parallel with acquisition. We delineated regions of interest (ROIs) in finger and toe motor/somatosensory regions and used an instrumental shaping procedure to induce a regionally specific increase in activity by providing an explicit monetary reward to reinforce neural activity in the target areas. After training, we found a significant and regionally specific increase in activity in the ROI being rewarded (finger or toe) and a decrease in activity in the nonrewarded region. This demonstrates that instrumental conditioning procedures can be used to directly shape neural activity, even without the production of an overt behavioral response. This procedure offers an important alternative to traditional biofeedback-based approaches and may be useful in the development of future therapies for stroke and other brain disorders.

View Full Paper →

Real-time functional MRI: development and emerging applications

Bagarinao, Epifanio, Nakai, Toshiharu, Tanaka, Yoshio (2006) · Magnetic resonance in medical sciences: MRMS: an official journal of Japan Society of Magnetic Resonance in Medicine

Real-time functional magnetic resonance imaging (fMRI) is an emerging technique for assessing the dynamic and robust changes in brain activation during an ongoing experiment. Real-time fMRI allows measurement of several processes within the brain as they occur. The extracted information can be used to monitor the quality of acquired data sets, serve as the basis for neurofeedback training, and manipulate scans for interactive paradigm designs. Although more work is needed, recent results have demonstrated a variety of potential applications for real-time fMRI for research and clinical use. We discuss these developments and focus on methods enabling real-time analysis of fMRI data sets, novel research applications arising from these approaches, and potential use of real-time fMRI in clinical settings.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss feedback and how neurofeedback training can help

* Required fields