Hippocampus

Research Papers

Showing 6 of 8

Reward sensitivity modulates the brain reward pathway in stress resilience via the inherent neuroendocrine system

Hu, Weiyu, Zhao, Xiaolin, Liu, Yadong, Ren, Yipeng, Wei, Zhenni, Tang, Zihan, Tian, Yun, Sun, Yadong, Yang, Juan (2022) · Neurobiology of Stress

In the previous 10 years, researchers have suggested a critical role for the brain reward system in stress resilience. However, no study has provided an empirical link between activity in the mesostriatal reward regions during stress and the recovery of cortisol stress response. Moreover, although reward sensitivity as a trait has been demonstrated to promote stress resilience, it remains unclear whether it modulates the brain reward system in stress resilience and how this effect is achieved by the inherent neuroendocrine system. To investigate these uncertainties, 70 young adults were recruited to participate in a ScanSTRESS task, and their brain imaging data and saliva samples (for cortisol assay) were collected during the task. In addition, we assessed reward sensitivity, cortisol awakening response, and intrinsic functional connectivity of the brain in all the participants. We found that left putamen activation during stress exposure positively predicted cortisol recovery. In addition, reward sensitivity was positively linked with activation of the left putamen, and this relationship was serially mediated by the cortisol awakening response and right hippocampus-left inferior frontal gyrus intrinsic connectivity. These findings suggest that reward sensitivity modulates reward pathways in stress resilience through the interplay of the diurnal stress response system and network of the hippocampus-prefrontal circuitry. Summarily, the current study built a model to highlight the dynamic and multifaceted interaction between pertinent allostatic factors in the reward-resilience pathway and uncovered new insight into the resilience function of the mesostriatal reward system during stress.

View Full Paper →

What the hippocampus tells the HPA axis: Hippocampal output attenuates acute stress responses via disynaptic inhibition of CRF+ PVN neurons

Cole, Anthony B., Montgomery, Kristen, Bale, Tracy L., Thompson, Scott M. (2022) · Neurobiology of Stress

The hippocampus exerts inhibitory feedback on the release of glucocorticoids. Because the major hippocampal efferent projections are excitatory, it has been hypothesized that this inhibition is mediated by populations of inhibitory neurons in the hypothalamus or elsewhere. These regions would be excited by hippocampal efferents and project to corticotropin-releasing factor (CRF) cells in the paraventricular nucleus of the hypothalamus (PVN). A direct demonstration of the synaptic responses elicited by hippocampal outputs in PVN cells or upstream GABAergic interneurons has not been provided previously. Here, we used viral vectors to express channelrhodopsin (ChR) and enhanced yellow fluorescent protein (EYFP) in pyramidal cells in the ventral hippocampus (vHip) in mice expressing tdTomato in GABA- or CRF-expressing neurons. We observed dense innervation of the bed nucleus of the stria terminalis (BNST) by labeled vHip axons and sparse labeling within the PVN. Using whole-cell voltage-clamp recording in parasagittal brain slices containing the BNST and PVN, photostimulation of vHip terminals elicited rapid excitatory postsynaptic currents (EPSCs) and longer-latency inhibitory postsynaptic currents (IPSCs) in both CRF+ and GAD + cells. The ratio of synaptic excitation and inhibition was maintained in CRF + cells during 20 Hz stimulus trains. Photostimulation of hippocampal afferents to the BNST and PVN in vivo inhibited the rise in blood glucocorticoid levels produced by acute restraint stress. We thus provide functional evidence suggesting that hippocampal output to the BNST contributes to a net inhibition of the hypothalamic-pituitary axis, providing further mechanistic insights into this process using methods with enhanced spatial and temporal resolution.

View Full Paper →

Hippocampal volume recovery with real-time functional MRI amygdala neurofeedback emotional training for posttraumatic stress disorder

Misaki, Masaya, Mulyana, Beni, Zotev, Vadim, Wurfel, Brent E., Krueger, Frank, Feldner, Matthew, Bodurka, Jerzy (2021) · Journal of Affective Disorders

BACKGROUND: Small hippocampal volume is a prevalent neurostructural abnormality in posttraumatic stress disorder (PTSD). However, whether the hippocampal atrophy is the cause of disease symptoms or a pre-existing risk factor and whether it is a reversible alteration or a permanent trait are unclear. The trait- or state-dependent alteration could also differ among the hippocampal subfields. METHODS: The study examined the longitudinal hippocampal volume changes due to positive emotional training with left amygdala (LA) real-time fMRI neurofeedback (rtfMRI-nf) in combat veterans with PTSD. The participants were trained to increase the neurofeedback signal from LA (experimental group, N = 20) or brain region not involved in emotion processing (control group, N = 9) by recalling a positive autobiographical memory. The pre- and post-training structural MRI brain images were processed with FreeSurfer to evaluate the hippocampal subfield volumes. Hippocampal volumes for healthy controls (N = 43) were also examined to evaluate the baseline abnormality in PTSD. RESULTS: A significant group difference in volume change was found in the left CA1 head region. This region had the most significant volume reduction at the baseline in PTSD. The experimental group showed a significant volume increase, while the control group showed a significant volume decrease in this region. The volume change in the control group negatively correlated with interval days between the scans. LIMITATIONS: A cognitive improvement due to the hippocampal volume increase could not be found with symptom scales. CONCLUSIONS: RtfMRI-nf positive emotional training increased the hippocampus volume among people with PTSD, suggesting that hippocampal atrophy in PTSD is modifiable.

View Full Paper →

A Pilot Adaptive Neurofeedback Investigation of the Neural Mechanisms of Implicit Emotion Regulation Among Women With PTSD

Weaver, Shelby S., Birn, Rasmus M., Cisler, Josh M. (2020) · Frontiers in Systems Neuroscience

Posttraumatic stress disorder (PTSD) is widely associated with deficits in implicit emotion regulation. Recently, adaptive fMRI neurofeedback (A-NF) has been developed as a methodology that offers a unique probe of brain networks that mediate implicit emotion regulation and their impairment in PTSD. We designed an A-NF paradigm in which difficulty of an emotional conflict task (i.e., embedding trauma distractors onto a neutral target stimulus) was controlled by a whole-brain classifier trained to differentiate attention to the trauma distractor vs. target. We exploited this methodology to test whether PTSD was associated with: (1) an altered brain state that differentiates attention towards vs. away from trauma cues; and (2) an altered ability to use concurrent feedback about brain states during an implicit emotion regulation task. Adult women with a current diagnosis of PTSD (n = 10) and healthy control (n = 9) women participated in this task during 3T fMRI. During two initial non-feedback runs used to train a whole-brain classifier, we observed: (1) poorer attention performance in PTSD; and (2) a linear relationship between brain state discrimination and attention performance, which was significantly attenuated among the PTSD group when the task contained trauma cues. During the A-NF phase, the PTSD group demonstrated poorer ability to regulate brain states as per attention instructions, and this poorer ability was related to PTSD symptom severity. Further, PTSD was associated with the heightened encoding of feedback in the insula and hippocampus. These results suggest a novel understanding of whole-brain states and their regulation that underlie emotion regulation deficits in PTSD.

View Full Paper →

Structural MRI Analysis of Chronic Pain Patients Following Interdisciplinary Treatment Shows Changes in Brain Volume and Opiate-Dependent Reorganization of the Amygdala and Hippocampus

Gagnon, Christine M., Scholten, Paul, Atchison, James, Jabakhanji, Rami, Wakaizumi, Kenta, Baliki, Marwan (2020) · Pain Medicine (Malden, Mass.)

OBJECTIVE: The present study examined pre- to post-treatment changes in volumes for brain structures known to be associated with pain processing (thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens) following an interdisciplinary pain management program. DESIGN: Twenty-one patients participating in a four-week interdisciplinary pain management program completed the study. The program consisted of individual and group therapies with the following disciplines: physical therapy, occupational therapy, pain psychology, biofeedback/relaxation training, nursing lectures, and medical management. All patients underwent functional magnetic resonance imaging of the brain before the start and at completion of the program. They also completed standard outcome measures assessing pain, symptoms of central sensitization, disability, mood, coping, pain acceptance, and impressions of change. RESULTS: Our results showed a significant increase in total brain volume, as well as increased volumes in the thalamus, hippocampus, and amygdala. As expected, we also found significant improvements in our standard outcome measures. The majority of patients rated themselves as much or very much improved. The increase in volume in the hippocampus was significantly associated with patient perceptions of change. However, the correlations were in the unexpected direction, such that greater increases in hippocampal volume were associated with perceptions of less improvement. Further exploratory analyses comparing patients by their opioid use status (use vs no use) showed differential program effects on volume increases in the hippocampus and amygdala. CONCLUSIONS: These findings show that a four-week interdisciplinary pain management program resulted in changes in the brain, which adds objective findings further demonstrating program efficacy.

View Full Paper →

Reduced interference in working memory following mindfulness training is associated with increases in hippocampal volume

Greenberg, Jonathan, Romero, Victoria L., Elkin-Frankston, Seth, Bezdek, Matthew A., Schumacher, Eric H., Lazar, Sara W. (2019) · Brain Imaging and Behavior

Proactive interference occurs when previously relevant information interferes with retaining newer material. Overcoming proactive interference has been linked to the hippocampus and deemed critical for cognitive functioning. However, little is known about whether and how this ability can be improved or about the neural correlates of such improvement. Mindfulness training emphasizes focusing on the present moment and minimizing distraction from competing thoughts and memories. It improves working memory and increases hippocampal density. The current study examined whether mindfulness training reduces proactive interference in working memory and whether such improvements are associated with changes in hippocampal volume. 79 participants were randomized to a 4-week web-based mindfulness training program or a similarly structured creative writing active control program. The mindfulness group exhibited lower proactive interference error rates compared to the active control group following training. No group differences were found in hippocampal volume, yet proactive interference improvements following mindfulness training were significantly associated with volume increases in the left hippocampus. These results provide the first evidence to suggest that (1) mindfulness training can protect against proactive interference, and (2) that these benefits are related to hippocampal volumetric increases. Clinical implications regarding the application of mindfulness training in conditions characterized by impairments to working memory and reduced hippocampal volume such as aging, depression, PTSD, and childhood adversity are discussed.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss hippocampus and how neurofeedback training can help

* Required fields