Hyperkinesis

Research Papers

Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting

Lubar, Judith O., Lubar, Dr Joel F. (1984) · Biofeedback and Self-regulation

Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12-to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4–8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.

View Full Paper →

Operant conditioning of EEG rhythms and ritalin in the treatment of hyperkinesis

Shouse, M. N., Lubar, J. F. (1979) · Biofeedback and Self-regulation

Enhanced voluntary motor inhibition regularly accompanies conditioned increases in the sensorimotor rhythm (SMR), a 12–14-Hz Rolandic EEG rhythm in cats. A similar rhythm, presumably SMR, has also been identified in the human EEG. The clinical effectiveness of SMR operant conditioning has been claimed for epilepsy, insomnia, and hyperkinesis concurrent with seizure disorders. The present report attempts to follow up and replicate preliminary findings that suggested the technique's successful application to hyperkinesis uncomplicated by a history of epilepsy. SMR was defined as 12–14-Hz EEG activity in the absence of high-voltage slow-wave activity between 4 and 7 Hz. Anticipated treatment effects were indexed by systematic behavioral assessments of undirected motor activity and short attention span in the classroom. EEG and behavioral indices were monitored in four hyperkinetic children under the following six conditions: (1) No Drug, (2) Drug Only, (3) Drug and SMR Training I, (4) Drug and SMR Reversal Training, (5) Drug and SMR Training II, (6) No Drug and SMR Training. All hyperkinetic subjects were maintained on a constant drug regimen throughout the phases employing chemotherapy. Contingent increases and decreases in SMR occurred in three of four training subjects and were associated with similar changes in classroom assessments of motor inactivity. Combining medication and SMR training resulted in substantial improvements that exceeded the effects of drugs alone and were sustained with SMR training after medication was withdrawn. In contrast, these physiological and behavioral changes were absent in one highly distractible subject who failed to acquire the SMR task. Finally, pretraining levels of SMR accurately reflected both the severity of original motor deficits and the susceptibility of hyperkinetic subjects to both treatments. Although the procedure clearly reduced hyperkinetic behavior, a salient, specific therapeutic factor could not be identified due to the dual EEG contingency imposed combined with associated changes in EMG. Despite these and other qualifying factors, the findings suggested the prognostic and diagnostic value of the SMR in the disorder when overactivity rather than distractibility is the predominant behavioral deficit.

View Full Paper →

EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): a preliminary report

Lubar, J. F., Shouse, M. N. (1976) · Biofeedback and Self-Regulation

Reduced seizure incidence coupled with voluntary motor inhibition accompanied conditioned increases in the sensorimotor rhythm (SMR), a 12- 14 Hz rhythm appearing over rolandic cortex. Although SMR biofeedback training has been successfully applied to various forms of epilepsy in humans, its potential use in decreasing hyperactivity has been limited to a few cases in which a seizure history was also a significant feature. The present study represents a first attempt to explore the technique's applicability to the problem of hyperkinesis independent of the epilepsy issue. The results of several months of EEG biofeedback training in a hyperkinetic child tend to corroborate and extend previous findings. Feedback presentations for SMR were contingent on the production of 12- 14-Hz activity in the absence of 4- 7-Hz slow-wave activity. A substantial increase in SMR motor inhibition, as gauged by laboratory measures of muscular tone (chin EMG) and by a global behavioral assessment in the classroom. Opposite trends in motor inhibition occurred when the training procedure was reversed and feedback presentations were contingent on the production of 4- 7 Hz in the absence of 12- 14-Hz activity. Although the preliminary nature of these results is stressed, the subject population has recently been increased to establish the validity and generality of the findings and will include the use of SMR biofeedback training after medication has been withdrawn.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss hyperkinesis and how neurofeedback training can help

* Required fields