Longitudinal Studies

Research Papers

Does baseline EEG activity differ in the transition to or from a chronic pain state? A longitudinal study

Schuurman, Britt B., Vossen, Catherine J., van Amelsvoort, Therese A. M. J., Lousberg, Richel L. (2023) · Pain Practice: The Official Journal of World Institute of Pain

BACKGROUND AND AIM: Identifying EEG brain markers might yield better mechanistic insights into how chronic pain develops and could be treated. An existing longitudinal EEG study gave us the opportunity to determine whether the development of pain is accompanied by less alpha power-ie, a "relaxed" brain state-and vice versa. METHODS: Five-minute resting EEG with the eyes open was measured 2 times in 95 subjects at T0 (baseline) and T1 (6 months later). Based on the Short-Form Health Survey and Brief Pain Inventory questionnaire, subjects were divided into 4 groups: staying pain-free (n = 44), developing chronic pain (n = 8), becoming pain-free (n = 15), and ongoing chronic pain (n = 28). The EEG data of 14 electrodes were analyzed by multilevel regression. RESULTS: The group that developed chronic pain demonstrated less power in the lower-frequency bands over time during the resting state EEG, whereas the transition to a pain-free state had the opposite pattern. Thus, the a priori hypothesis was confirmed. CONCLUSIONS: Transitions in pain states are linked to a change in baseline EEG activity. Future research is needed to replicate these results in a larger study sample and in targeted clinical populations. Furthermore, these results might be beneficial in optimizing neurofeedback algorithms for the treatment of chronic pain.

View Full Paper →

New treatment strategy for chronic low back pain with alpha wave neurofeedback

Shimizu, Keisuke, Inage, Kazuhide, Morita, Mitsuo, Kuroiwa, Ryota, Chikubu, Hiroto, Hasegawa, Tadashi, Nozaki-Taguchi, Natsuko, Orita, Sumihisa, Shiga, Yasuhiro, Eguchi, Yawara, Takabatake, Kazuhiko, Ohtori, Seiji (2022) · Scientific Reports

The lifetime prevalence of low back pain is 83%. Since there is a lack of evidence for therapeutic effect by cognitive behavioral therapy (CBT) or physical therapy (PT), it is necessary to develop objective physiological indexes and effective treatments. We conducted a prospective longitudinal study to evaluate the treatment effects of CBT, PT, and neurofeedback training (NFT) during alpha wave NFT. The early-chronic cases within 1 year and late-chronic cases over 1 year after the diagnosis of chronic low back pain were classified into six groups: Controls, CBTs, PTs, NFTs, CBT-NFTs, PT-NFTs. We evaluated the difference in EEG, psychosocial factors, scores of low back pain before/after the intervention. Therapeutic effect was clearly more effective in the early-chronic cases. We found that the intensity of alpha waves increased significantly after therapeutic intervention in the NFT groups, but did not have the main effect of reducing low back pain; the interaction between CBT and NFT reduced low back pain. Factors that enhance therapeutic effect are early intervention, increased alpha waves, and self-efficacy due to parallel implementation of CBT/PT and NFT. A treatment protocol in which alpha wave neurofeedback training is subsidiarily used with CBT or PT should be developed in the future.

View Full Paper →

A pilot study of a novel therapeutic approach to obesity: CNS modification by N.I.R. H.E.G. neurofeedback

Percik, Ruth, Cina, Jenny, Even, Batel, Gitler, Asaf, Geva, Diklah, Seluk, Lior, Livny, Abigail (2019) · Clinical Nutrition (Edinburgh, Scotland)

BACKGROUND & AIMS: Despite the thorough mapping of brain pathways involved in eating behavior, no treatment aimed at modulating eating dysregulation from its neurocognitive root has been established yet. We aimed to evaluate the effect of N.I.R. H.E.G. (Near Infra-Red Hemoencephalography) neurofeedback training on appetite control, weight and food-related brain activity. METHODS: Six healthy male participants with overweight or mild obesity went through 10 N.I.R. H.E.G. neurofeedback sessions designed to practice voluntary activation of the prefrontal cortex. Weight, eating behavior, appetite control and brain activity related to food and self-inhibition based on fMRI were evaluated before and after neurofeedback training. RESULTS: Our study group demonstrated a positive trend of increased self-control and inhibition related to food behavior, reduced weight and increased activation during an fMRI response-inhibition task (Go-No-Go - GNG) in the predefined region of interest (ROI): superior orbitofrontal cortex (sOFC). CONCLUSIONS: N.I.R. H.E.G. holds a promising potential as a feasible neurofeedback platform for modulation of cortical brain circuits involved in self-control and eating behavior and should be further evaluated and developed as a brain modifying device for the treatment and prevention of obesity.

View Full Paper →

Real-time fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in combat veterans with and without PTSD: a connectome-wide investigation

Misaki, Masaya, Phillips, Raquel, Zotev, Vadim, Wong, Chung-Ki, Wurfel, Brent E., Krueger, Frank, Feldner, Matthew, Bodurka, Jerzy (2018) · NeuroImage. Clinical

Self-regulation of brain activation using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) is an emerging approach for treating mood and anxiety disorders. The effect of neurofeedback training on resting-state functional connectivity warrants investigation as changes in spontaneous brain activation could reflect the association between sustained symptom relief and brain alteration. We investigated the effect of amygdala-focused rtfMRI-nf training on resting-state functional connectivity in combat veterans with and without posttraumatic stress disorder (PTSD) who were trained to increase a feedback signal reflecting left amygdala activity while recalling positive autobiographical memories (Zotev et al., 2018). The analysis was performed in three stages: i) first, we investigated the connectivity in the left amygdala region; ii) next, we focused on the abnormal resting-state functional connectivity identified in our previous analysis of this data (Misaki et al., 2018); and iii) finally, we performed a novel data-driven longitudinal connectome-wide analysis. We introduced a longitudinal multivariate distance matrix regression (MDMR) analysis to comprehensively examine neurofeedback training effects beyond those associated with abnormal baseline connectivity. These comprehensive exploratory analyses suggested that abnormal resting-state connectivity for combat veterans with PTSD was partly normalized after the training. This included hypoconnectivities between the left amygdala and the left ventrolateral prefrontal cortex (vlPFC) and between the supplementary motor area (SMA) and the dorsal anterior cingulate cortex (dACC). The increase of SMA-dACC connectivity was associated with PTSD symptom reduction. Longitudinal MDMR analysis found a connectivity change between the precuneus and the left superior frontal cortex. The connectivity increase was associated with a decrease in hyperarousal symptoms. The abnormal connectivity for combat veterans without PTSD - such as hypoconnectivity in the precuneus with a superior frontal region and hyperconnectivity in the posterior insula with several regions - could also be normalized after the training. These results suggested that the rtfMRI-nf training effect was not limited to a feedback target region and symptom relief could be mediated by brain modulation in several regions other than in a feedback target area. While further confirmatory research is needed, the results may provide valuable insight into treatment effects on the whole brain resting-state connectivity.

View Full Paper →

Mindfulness practice leads to increases in regional brain gray matter density

Hölzel, Britta K., Carmody, James, Vangel, Mark, Congleton, Christina, Yerramsetti, Sita M., Gard, Tim, Lazar, Sara W. (2011) · Psychiatry Research

Therapeutic interventions that incorporate training in mindfulness meditation have become increasingly popular, but to date little is known about neural mechanisms associated with these interventions. Mindfulness-Based Stress Reduction (MBSR), one of the most widely used mindfulness training programs, has been reported to produce positive effects on psychological well-being and to ameliorate symptoms of a number of disorders. Here, we report a controlled longitudinal study to investigate pre-post changes in brain gray matter concentration attributable to participation in an MBSR program. Anatomical magnetic resonance (MR) images from 16 healthy, meditation-naïve participants were obtained before and after they underwent the 8-week program. Changes in gray matter concentration were investigated using voxel-based morphometry, and compared with a waiting list control group of 17 individuals. Analyses in a priori regions of interest confirmed increases in gray matter concentration within the left hippocampus. Whole brain analyses identified increases in the posterior cingulate cortex, the temporo-parietal junction, and the cerebellum in the MBSR group compared with the controls. The results suggest that participation in MBSR is associated with changes in gray matter concentration in brain regions involved in learning and memory processes, emotion regulation, self-referential processing, and perspective taking.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss longitudinal studies and how neurofeedback training can help

* Required fields