Memory, Episodic
Research Papers
Improving episodic memory: Frontal-midline theta neurofeedback training increases source memory performance
Cognitive and neurofeedback training (NFT) studies have demonstrated that training-induced alterations of frontal-midline (FM) theta activity (4-8 Hz) transfer to cognitive control processes. Given that FM theta oscillations are assumed to provide top-down control for episodic memory retrieval, especially for source retrieval, that is, accurate recollection of contextual details of prior episodes, the present study investigated whether FM theta NFT transfers to memory control processes. It was assessed (1) whether FM theta NFT improves source retrieval and modulates its underlying EEG characteristics and (2) whether this transfer extends over two posttests. Over seven NFT sessions, the training group who trained individual FM theta activity showed greater FM theta increase than an active control group who trained randomly chosen frequency bands. The training group showed better source retrieval in a posttraining session performed 13 days after NFT and their performance increases from pre- to both posttraining sessions were predicted by NFT theta increases. Thus, training-induced enhancement of memory control processes seems to protect newly formed memories from proactive interference of previously learned information. EEG analyses revealed that during pretest both groups showed source memory specific theta activity at frontal and parietal sites. Surprisingly, training-induced improvements in source retrieval tended to be accompanied by less prestimulus FM theta activity, which was predicted by NFT theta change for the training but not the control group, suggesting a more efficient use of memory control processes after training. The present findings provide unique evidence for the enhancement of memory control processes by FM theta NFT.
View Full Paper →Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review
Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy.
View Full Paper →Neurofeedback training of EEG alpha rhythm enhances episodic and working memory
Neurofeedback training (NFT) of the alpha rhythm has been used for several decades but is still controversial in regards to its trainability and effects on working memory. Alpha rhythm of the frontoparietal region are associated with either the intelligence or memory of healthy subjects and are also related to pathological states. In this study, alpha NFT effects on memory performances were explored. Fifty healthy participants were recruited and randomly assigned into a group receiving a 8-12-Hz amplitude (Alpha) or a group receiving a random 4-Hz amplitude from the range of 7 to 20 Hz (Ctrl). Three NFT sessions per week were conducted for 4 weeks. Working memory was assessed by both a backward digit span task and an operation span task, and episodic memory was assessed using a word pair task. Four questionnaires were used to assess anxiety, depression, insomnia, and cognitive function. The Ctrl group had no change in alpha amplitude and duration. In contrast, the Alpha group showed a progressive significant increase in the alpha amplitude and total alpha duration of the frontoparietal region. Accuracies of both working and episodic memories were significantly improved in a large proportion of participants of the Alpha group, particularly for those with remarkable alpha-amplitude increases. Scores of four questionnaires fell in a normal range before and after NFT. The current study provided supporting evidence for alpha trainability within a small session number compared with that of therapy. The findings suggested the enhancement of working and episodic memory through alpha NFT. Hum Brain Mapp 37:2662-2675, 2016. © 2016 Wiley Periodicals, Inc.
View Full Paper →Autobiographical Memory Disturbances in Depression: A Novel Therapeutic Target?
Major depressive disorder (MDD) is characterized by a dysfunctional processing of autobiographical memories. We review the following core domains of deficit: systematic biases favoring materials of negative emotional valence; diminished access and response to positive memories; a recollection of overgeneral memories in detriment of specific autobiographical memories; and the role of ruminative processes and avoidance when dealing with autobiographical memories. Furthermore, we review evidence from functional neuroimaging studies of neural circuits activated by the recollection of autobiographical memories in both healthy and depressive individuals. Disruptions in autobiographical memories predispose and portend onset and maintenance of depression. Thus, we discuss emerging therapeutics that target memory difficulties in those with depression. We review strategies for this clinical domain, including memory specificity training, method-of-loci, memory rescripting, and real-time fMRI neurofeedback training of amygdala activity in depression. We propose that the manipulation of the reconsolidation of autobiographical memories in depression might represent a novel yet largely unexplored, domain-specific, therapeutic opportunity for depression treatment.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss memory, episodic and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →