neural plasticity

Research Papers

High-Definition tDCS of Noun and Verb Retrieval in Naming and Lexical Decision

Malyutina, Svetlana, Den Ouden, Dirk-Bart (2015) · NeuroRegulation

High-definition transcranial direct current stimulation (HD-tDCS) is a novel brain stimulation method that has high potential for use in language therapy for speakers with aphasia, due to its safety and focality. This study aimed to obtain foundational data on using HD-tDCS to modulate language processing in healthy speakers. Participants received stimulation either of Broca's area or of the left angular gyrus (20 min of anodal, cathodal, and sham stimulation on separate days), followed by naming and lexical decision tasks with single-word verb and noun stimuli. We found that cathodal stimulation over both Broca's area and the left angular gyrus increased naming speed for both verbs and nouns, challenging the traditional view of cathodal stimulation as suppressive or leading to decreased performance. The effect did not extend to the lexical decision task. Additionally, effects of specific stimulation types depended on the order of their administration, suggesting possible physiological carry-over and/or task novelty effects. These results are relevant to the application of HD-tDCS to enhance and direct neural plasticity in patients with neurogenic language disorders.

View Full Paper →

Learned regulation of spatially localized brain activation using real-time fMRI

deCharms, R.C, Christoff, Kalina, Glover, Gary H., Pauly, John M., Whitfield, Susan, Gabrieli, John DE (2004) · Neuroimage

It is not currently known whether subjects can learn to voluntarily control activation in localized regions of their own brain using neuroimaging. Here, we show that subjects were able to learn enhanced voluntary control over task-specific activation in a chosen target region, the somatomotor cortex. During an imagined manual action task, subjects were provided with continuous direction regarding their cognitive processes. Subjects received feedback information about their current level of activation in a target region of interest (ROI) derived using real-time functional magnetic resonance imaging (rtfMRI), and they received automatically-adjusted instructions for the level of activation to achieve. Information was provided both as continously upated graphs and using a simple virtual reality interface that provided an image analog of the level of activation. Through training, subjects achieved an enhancement in their control over brain activation that was anatomically specific to the target ROI, the somatomotor cortex. The enhancement took place when rtfMRI-based training was provided, but not in a control group that received similar training without rtfMRI information, showing that the effect was not due to conventional, practice-based neural plasticity alone. Following training, using cognitive processes alone subjects could volitionally induce fMRI activation in the somatomotor cortex that was comparable in magnitude to the activation observed during actual movement. The trained subjects increased fMRI activation without muscle tensing, and were able to continue to control brain activation even when real-time fMRI information was no longer provided. These results show that rtfMRI information can be used to direct cognitive processes, and that subjects are able to learn volitionally regulate activation in an anatomically-targeted brain region, surpassing the task-driven activation present before training.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss neural plasticity and how neurofeedback training can help

* Required fields