Neurosciences

Research Papers

Computational neuroscience approach to biomarkers and treatments for mental disorders

Yahata, Noriaki, Kasai, Kiyoto, Kawato, Mitsuo (2017) · Psychiatry and Clinical Neurosciences

Psychiatry research has long experienced a stagnation stemming from a lack of understanding of the neurobiological underpinnings of phenomenologically defined mental disorders. Recently, the application of computational neuroscience to psychiatry research has shown great promise in establishing a link between phenomenological and pathophysiological aspects of mental disorders, thereby recasting current nosology in more biologically meaningful dimensions. In this review, we highlight recent investigations into computational neuroscience that have undertaken either theory- or data-driven approaches to quantitatively delineate the mechanisms of mental disorders. The theory-driven approach, including reinforcement learning models, plays an integrative role in this process by enabling correspondence between behavior and disorder-specific alterations at multiple levels of brain organization, ranging from molecules to cells to circuits. Previous studies have explicated a plethora of defining symptoms of mental disorders, including anhedonia, inattention, and poor executive function. The data-driven approach, on the other hand, is an emerging field in computational neuroscience seeking to identify disorder-specific features among high-dimensional big data. Remarkably, various machine-learning techniques have been applied to neuroimaging data, and the extracted disorder-specific features have been used for automatic case-control classification. For many disorders, the reported accuracies have reached 90% or more. However, we note that rigorous tests on independent cohorts are critically required to translate this research into clinical applications. Finally, we discuss the utility of the disorder-specific features found by the data-driven approach to psychiatric therapies, including neurofeedback. Such developments will allow simultaneous diagnosis and treatment of mental disorders using neuroimaging, thereby establishing 'theranostics' for the first time in clinical psychiatry.

View Full Paper →

Video Games for Neuro-Cognitive Optimization

Mishra, Jyoti, Anguera, Joaquin A., Gazzaley, Adam (2016) · Neuron

Sophisticated video games that integrate engaging cognitive training with real-time biosensing and neurostimulation have the potential to optimize cognitive performance in health and disease. We argue that technology development must be paired with rigorous scientific validation and discuss academic and industry opportunities in this field.

View Full Paper →

An Effective Neurofeedback Intervention to Improve Social Interactions in Children with Autism Spectrum Disorder

Friedrich, Elisabeth V. C., Sivanathan, Aparajithan, Lim, Theodore, Suttie, Neil, Louchart, Sandy, Pillen, Steven, Pineda, Jaime A. (2015) · Journal of Autism and Developmental Disorders

Neurofeedback training (NFT) approaches were investigated to improve behavior, cognition and emotion regulation in children with autism spectrum disorder (ASD). Thirteen children with ASD completed pre-/post-assessments and 16 NFT-sessions. The NFT was based on a game that encouraged social interactions and provided feedback based on imitation and emotional responsiveness. Bidirectional training of EEG mu suppression and enhancement (8–12 Hz over somatosensory cortex) was compared to the standard method of enhancing mu. Children learned to control mu rhythm with both methods and showed improvements in (1) electrophysiology: increased mu suppression, (2) emotional responsiveness: improved emotion recognition and spontaneous imitation, and (3) behavior: significantly better behavior in every-day life. Thus, these NFT paradigms improve aspects of behavior necessary for successful social interactions.

View Full Paper →

A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration

Gruzelier, John (2008) · Cognitive Processing

Professionally significant enhancement of music and dance performance and mood has followed training with an EEG-neurofeedback protocol which increases the ratio of theta to alpha waves using auditory feedback with eyes closed. While originally the protocol was designed to induce hypnogogia, a state historically associated with creativity, the outcome was psychological integration, while subsequent applications focusing on raising the theta–alpha ratio, reduced depression and anxiety in alcoholism and resolved post traumatic stress syndrome (PTSD). In optimal performance studies we confirmed associations with creativity in musical performance, but effects also included technique and communication. We extended efficacy to dance and social anxiety. Diversity of outcome has a counterpart in wide ranging associations between theta oscillations and behaviour in cognitive and affective neuroscience: in animals with sensory-motor activity in exploration, effort, working memory, learning, retention and REM sleep; in man with meditative concentration, reduced anxiety and sympathetic autonomic activation, as well as task demands in virtual spatial navigation, focussed and sustained attention, working and recognition memory, and having implications for synaptic plasticity and long term potentiation. Neuroanatomical circuitry involves the ascending mescencephalic-cortical arousal system, and limbic circuits subserving cognitive as well as affective/motivational functions. Working memory and meditative bliss, representing cognitive and affective domains, respectively, involve coupling between frontal and posterior cortices, exemplify a role for theta and alpha waves in mediating the interaction between distal and widely distributed connections. It is posited that this mediation in part underpins the integrational attributes of alpha–theta training in optimal performance and psychotherapy, creative associations in hypnogogia, and enhancement of technical, communication and artistic domains of performance in the arts.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss neurosciences and how neurofeedback training can help

* Required fields