obesity
Research Papers
Inhibitory control as a potential treatment target for obesity
OBJECTIVES: Strong reward responsiveness to food and insufficient inhibitory control are thought to be implicated in the development and maintenance of obesity. This narrative review addresses the role of inhibitory control in obesity and weight loss, and in how far inhibitory control is a promising target for weight loss interventions. METHODS: PubMed, Web of Science, and Google Scholar were searched for papers up to May 2021. 41 papers were included. RESULTS: Individuals with obesity have poorer food-specific inhibitory control, particularly when hungry, and less concurrent activation of inhibitory brain areas. Moreover, this was strongly predictive of future weight gain. More activation of inhibitory brain areas, on the other hand, was predictive of weight loss: individuals with successful weight loss initially show inhibitory brain activity comparable to that of normal weight individuals. When successful weight maintenance is achieved for at least 1 year, this inhibitory activity is further increased. Interventions targeting inhibitory control in obese individuals have divergent effects. Firstly, food-specific inhibitory control training is particularly effective for people with low inhibitory control and high BMI. Secondly, neuromodulation paradigms are rather heterogeneous: although rTMS to the left dorsolateral prefrontal cortex induced some weight-loss, multiple sessions of tDCS reduced food consumption (desire) and induced weight loss in two thirds of the papers. Thirdly, neurofeedback results in successful upregulation of brain activity and connectivity, but occasionally leads to increased food intake. In conclusion, inhibitory control is implicated in obesity. It can be targeted to promote weight loss although major weight losses have not been achieved.
View Full Paper →A pilot study of a novel therapeutic approach to obesity: CNS modification by N.I.R. H.E.G. neurofeedback
BACKGROUND & AIMS: Despite the thorough mapping of brain pathways involved in eating behavior, no treatment aimed at modulating eating dysregulation from its neurocognitive root has been established yet. We aimed to evaluate the effect of N.I.R. H.E.G. (Near Infra-Red Hemoencephalography) neurofeedback training on appetite control, weight and food-related brain activity. METHODS: Six healthy male participants with overweight or mild obesity went through 10 N.I.R. H.E.G. neurofeedback sessions designed to practice voluntary activation of the prefrontal cortex. Weight, eating behavior, appetite control and brain activity related to food and self-inhibition based on fMRI were evaluated before and after neurofeedback training. RESULTS: Our study group demonstrated a positive trend of increased self-control and inhibition related to food behavior, reduced weight and increased activation during an fMRI response-inhibition task (Go-No-Go - GNG) in the predefined region of interest (ROI): superior orbitofrontal cortex (sOFC). CONCLUSIONS: N.I.R. H.E.G. holds a promising potential as a feasible neurofeedback platform for modulation of cortical brain circuits involved in self-control and eating behavior and should be further evaluated and developed as a brain modifying device for the treatment and prevention of obesity.
View Full Paper →Food Addiction: Implications for the Diagnosis and Treatment of Overeating
With the obesity epidemic being largely attributed to overeating, much research has been aimed at understanding the psychological causes of overeating and using this knowledge to develop targeted interventions. Here, we review this literature under a model of food addiction and present evidence according to the fifth edition of the Diagnostic and Statistical Manual (DSM-5) criteria for substance use disorders. We review several innovative treatments related to a food addiction model ranging from cognitive intervention tasks to neuromodulation techniques. We conclude that there is evidence to suggest that, for some individuals, food can induce addictive-type behaviours similar to those seen with other addictive substances. However, with several DSM-5 criteria having limited application to overeating, the term 'food addiction' is likely to apply only in a minority of cases. Nevertheless, research investigating the underlying psychological causes of overeating within the context of food addiction has led to some novel and potentially effective interventions. Understanding the similarities and differences between the addictive characteristics of food and illicit substances should prove fruitful in further developing these interventions.
View Full Paper →Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity
Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss obesity and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →