Psychomotor Performance

Research Papers

Showing 6 of 16

Enhancing learning in a perceptual-cognitive training paradigm using EEG-neurofeedback

Parsons, Brendan, Faubert, Jocelyn (2021) · Scientific Reports

This paper provides the framework and supporting evidence for a highly efficient closed-loop paradigm that modifies a classic learning scenario using real-time brain activity in order to improve learning performance in a perceptual-cognitive training paradigm known as 3-dimensional multiple object tracking, or 3D-MOT. Results demonstrate that, over 10 sessions, when manipulating this novel task by using real-time brain signals, speed and degree of learning can be substantially improved compared with a classic learning system or an active sham-control group. Superior performance persists even once the feedback signal is removed, which suggests that the effects of enhanced training are consolidated and do not rely on continued feedback. This type of learning paradigm could contribute to overcoming one of the fundamental limitations of neurofeedback and other cognitive enhancement techniques, a lack of observable transfer effects, by utilizing a method that can be directly integrated into the context in which improved performance is sought.

View Full Paper →

Interacting brains coming in sync through their minds: an interbrain neurofeedback study

Müller, Viktor, Perdikis, Dionysios, Mende, Melinda A., Lindenberger, Ulman (2021) · Annals of the New York Academy of Sciences

Neurophysiological evidence shows that interpersonal action coordination is accompanied by interbrain synchronization (IBS). However, the functional significance of this association remains unclear. Using two experimental designs, we explored whether IBS is amenable to neurofeedback (NFB). Feedback was provided either as two balls approaching each other (so-called ball design), or as two pendula, each reflecting the oscillatory activity of one of the two participants (so-called pendulum design). The NFB was provided at delta (i.e., 2.5 Hz) and theta (i.e., 5 Hz) electroencephalography frequencies, and manipulated by enhanced and inverse feedback. We showed that the participants were able to increase IBS by using NFB, especially when it was fed back at the theta frequency. Apart from intra- and interbrain coupling, other oscillatory activities (e.g., power spectral density, peak amplitude, and peak frequency) also changed during the task compared with the rest. Moreover, all the measures showed specific correlations with the subjective postsurvey item scores, reflecting subjective feeling and appraisal. We conclude that the use of IBS for NFB might help in specifying the contribution of IBS to interpersonal action coordination and in providing important information about the neural mechanisms of social interaction and the causal dimension of IBS.

View Full Paper →

Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback

Deiber, Marie-Pierre, Hasler, Roland, Colin, Julien, Dayer, Alexandre, Aubry, Jean-Michel, Baggio, Stéphanie, Perroud, Nader, Ros, Tomas (2020) · NeuroImage. Clinical

Abnormal patterns of electrical oscillatory activity have been repeatedly described in adult ADHD. In particular, the alpha rhythm (8-12 Hz), known to be modulated during attention, has previously been considered as candidate biomarker for ADHD. In the present study, we asked adult ADHD patients to self-regulate their own alpha rhythm using neurofeedback (NFB), in order to examine the modulation of alpha oscillations on attentional performance and brain plasticity. Twenty-five adult ADHD patients and 22 healthy controls underwent a 64-channel EEG-recording at resting-state and during a Go/NoGo task, before and after a 30 min-NFB session designed to reduce (desynchronize) the power of the alpha rhythm. Alpha power was compared across conditions and groups, and the effects of NFB were statistically assessed by comparing behavioral and EEG measures pre-to-post NFB. Firstly, we found that relative alpha power was attenuated in our ADHD cohort compared to control subjects at baseline and across experimental conditions, suggesting a signature of cortical hyper-activation. Both groups demonstrated a significant and targeted reduction of alpha power during NFB. Interestingly, we observed a post-NFB increase in resting-state alpha (i.e. rebound) in the ADHD group, which restored alpha power towards levels of the normal population. Importantly, the degree of post-NFB alpha normalization during the Go/NoGo task correlated with individual improvements in motor inhibition (i.e. reduced commission errors) only in the ADHD group. Overall, our findings offer novel supporting evidence implicating alpha oscillations in inhibitory control, as well as their potential role in the homeostatic regulation of cortical excitatory/inhibitory balance.

View Full Paper →

Neurofeedback-Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy Motor Control: A Double-Blind Sham-Controlled Study

He, Shenghong, Everest-Phillips, Claudia, Clouter, Andrew, Brown, Peter, Tan, Huiling (2020) · The Journal of Neuroscience: The Official Journal of the Society for Neuroscience

Abnormally increased β bursts in cortical-basal ganglia-thalamic circuits are associated with rigidity and bradykinesia in patients with Parkinson's disease. Increased β bursts detected in the motor cortex have also been associated with longer reaction times (RTs) in healthy participants. Here we further hypothesize that suppressing β bursts through neurofeedback training can improve motor performance in healthy subjects. We conducted a double-blind sham-controlled study on 20 human volunteers (10 females) using a sequential neurofeedback-behavior task with the neurofeedback reflecting the occurrence of β bursts over sensorimotor cortex quantified in real time. The results show that neurofeedback training helps healthy participants learn to volitionally suppress β bursts in the sensorimotor cortex, with training being accompanied by reduced RT in subsequent cued movements. These changes were only significant in the real feedback group but not in the sham group, confirming the effect of neurofeedback training over simple motor imagery. In addition, RTs correlated with the rate and accumulated duration of β bursts in the contralateral motor cortex before the go-cue, but not with averaged β power. The reduced RTs induced by neurofeedback training positively correlated with reduced β bursts across all tested hemispheres. These results strengthen the link between the occurrence of β bursts in the sensorimotor cortex before the go-cue and slowed movement initiation in healthy motor control. The results also highlight the potential benefit of neurofeedback training in facilitating voluntary suppression of β bursts to speed up movement initiation.SIGNIFICANCE STATEMENT This double-blind sham-controlled study suggested that neurofeedback training can facilitate volitional suppression of β bursts in sensorimotor cortex in healthy motor control better than sham feedback. The training was accompanied by reduced reaction time (RT) in subsequent cued movements, and the reduced RT positively correlated with the level of reduction in cortical β bursts before the go-cue, but not with average β power. These results provide further evidence of a causal link between sensorimotor β bursts and movement initiation and suggest that neurofeedback training could potentially be used to train participants to speed up movement initiation.

View Full Paper →

Using connectivity-based real-time fMRI neurofeedback to modulate attentional and resting state networks in people with high trait anxiety

Morgenroth, Elenor, Saviola, Francesca, Gilleen, James, Allen, Beth, Lührs, Michael, W Eysenck, Michael, Allen, Paul (2020) · NeuroImage. Clinical

High levels of trait anxiety are associated with impaired attentional control, changes in brain activity during attentional control tasks and altered network resting state functional connectivity (RSFC). Specifically, dorsolateral prefrontal cortex to anterior cingulate cortex (DLPFC - ACC) functional connectivity, thought to be crucial for effective and efficient attentional control, is reduced in high trait anxious individuals. The current study examined the potential of connectivity-based real-time functional magnetic imaging neurofeedback (rt-fMRI-nf) for enhancing DLPFC - ACC functional connectivity in trait anxious individuals. We specifically tested if changes in DLPFC - ACC connectivity were associated with reduced anxiety levels and improved attentional control. Thirty-two high trait anxious participants were assigned to either an experimental group (EG), undergoing veridical rt-fMRI-nf, or a control group (CG) that received sham (yoked) feedback. RSFC (using resting state fMRI), anxiety levels and Stroop task performance were assessed pre- and post-rt-fMRI-nf training. Post-rt-fMRI-nf training, relative to the CG, the EG showed reduced anxiety levels and increased DLPFC-ACC functional connectivity as well as increased RSFC in the posterior default mode network. Moreover, in the EG, changes in DLPFC - ACC functional connectivity during rt-fMRI-nf training were associated with reduced anxiety levels. However, there were no group differences in Stroop task performance. We conclude that rt-fMRI-nf targeting DLPFC - ACC functional connectivity can alter network connectivity and interactions and is a feasible method for reducing trait anxiety.

View Full Paper →

Facilitating Neurofeedback in Children with Autism and Intellectual Impairments Using TAGteach

LaMarca, Kristen, Gevirtz, Richard, Lincoln, Alan J., Pineda, Jaime A. (2018) · Journal of Autism and Developmental Disorders

Individuals with autism and intellectual impairments tend to be excluded from research due to their difficulties with methodological compliance. This study focuses on using Teaching with Acoustic Guidance-TAGteach-to behaviorally prepare children with autism and a IQ ≤ 80 to participate in a study on neurofeedback training (NFT). Seven children (ages 6-8) learned the prerequisite skills identified in a task analysis in an average of 5 h of TAGteach training, indicating that this is a feasible method of preparing intellectually-impaired children with autism to participate in NFT and task-dependent electroencephalography measures. TAGteach may thus have the potential to augment this population's ability to participate in less accessible treatments and behavioral neuroscientific studies.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss psychomotor performance and how neurofeedback training can help

* Required fields