real-time
Research Papers
EEG-LLAMAS: A low-latency neurofeedback platform for artifact reduction in EEG-fMRI
Simultaneous EEG-fMRI is a powerful multimodal technique for imaging the brain, but its use in neurofeedback experiments has been limited by EEG noise caused by the MRI environment. Neurofeedback studies typically require analysis of EEG in real time, but EEG acquired inside the scanner is heavily contaminated with ballistocardiogram (BCG) artifact, a high-amplitude artifact locked to the cardiac cycle. Although techniques for removing BCG artifacts do exist, they are either not suited to real-time, low-latency applications, such as neurofeedback, or have limited efficacy. We propose and validate a new open-source artifact removal software called EEG-LLAMAS (Low Latency Artifact Mitigation Acquisition Software), which adapts and advances existing artifact removal techniques for low-latency experiments. We first used simulations to validate LLAMAS in data with known ground truth. We found that LLAMAS performed better than the best publicly-available real-time BCG removal technique, optimal basis sets (OBS), in terms of its ability to recover EEG waveforms, power spectra, and slow wave phase. To determine whether LLAMAS would be effective in practice, we then used it to conduct real-time EEG-fMRI recordings in healthy adults, using a steady state visual evoked potential (SSVEP) task. We found that LLAMAS was able to recover the SSVEP in real time, and recovered the power spectra collected outside the scanner better than OBS. We also measured the latency of LLAMAS during live recordings, and found that it introduced a lag of less than 50 ms on average. The low latency of LLAMAS, coupled with its improved artifact reduction, can thus be effectively used for EEG-fMRI neurofeedback. A limitation of the method is its use of a reference layer, a piece of EEG equipment which is not commercially available, but can be assembled in-house. This platform enables closed-loop experiments which previously would have been prohibitively difficult, such as those that target short-duration EEG events, and is shared openly with the neuroscience community.
View Full Paper →Matched neurofeedback during fMRI differentially activates reward-related circuits in active and sham groups
BACKGROUND AND PURPOSE: Functional MRI neurofeedback (fMRI-nf) leverages the brain's ability to self-regulate its own activity. However, self-regulation processes engaged during fMRI-nf are incompletely understood. Here, we used matched feedback in an fMRI-nf experimental protocol to investigate whether brain processes recognize true neurofeedback signals. METHODS: We implemented an existing fMRI-nf protocol to train lateralized motor activity using a finger-tap task in conjunction with real-time feedback. Twelve healthy, right-handed, adult participants were assigned into age- and sex-matched active and sham study groups. Matched participant pairs received the same visual feedback, based on brain activity of the participant from the active group. We compared group-averaged activation maps before, during, and after neurofeedback, and analyzed changes in lateralized motor activity due to neurofeedback. RESULTS: Active and sham groups demonstrated different brain activation to the same feedback during neurofeedback. In particular, there was higher activation in visual cortex, secondary somatosensory cortex, and right inferior frontal gyrus in the active group compared to the sham group. Conversely, sham participants demonstrated higher activation in anterior cingulate cortex, left frontal pole, and posterior superior temporal gyrus. Despite differing brain activations during neurofeedback, neither group demonstrated significant improvement in lateralized motor activity from pre to postfeedback scan in the same session. We also observed no significant difference between pre and postfeedback activation maps, suggesting that no significant finger-tap related functional reorganization had occurred. CONCLUSIONS: These findings suggest that fMRI neurofeedback paradigms that monitor or incorporate activity from regions reported here would provide enhanced efficacy for research investigation and clinical intervention.
View Full Paper →fMRI neurofeedback facilitates anxiety regulation in females with spider phobia
Background: Spider phobics show an exaggerated fear response when encountering spiders. This fear response is aggravated by negative and irrational beliefs about the feared object. Cognitive reappraisal can target these beliefs, and therefore has a fear regulating effect. The presented study investigated if neurofeedback derived from functional magnetic resonance imaging (fMRI) would facilitate anxiety regulation by cognitive reappraisal, using spider phobia as a model of anxiety disorders. Feedback was provided based on activation in left dorsolateral prefrontal cortex and right insula, as indicators of engagement and regulation success, respectively. Methods: Eighteen female spider phobics participated in a randomized, controlled, single-blinded study. All participants completed a training session in the MRI scanner. Participants assigned to the neurofeedback condition were instructed to shape their regulatory strategy based on the provided feedback. Participants assigned to the control condition were asked to adapt their strategy intuitively. Results: Neurofeedback participants exhibited lower anxiety levels than the control group at the end of the training. In addition, only neurofeedback participants achieved down-regulation of insula activation levels by cognitive reappraisal. Group differences became more pronounced over time, supporting learning as a mechanism behind this effect. Importantly, within the neurofeedback group, achieved changes in insula activation levels during training predicted long-term anxiety reduction. Conclusions: The conducted study provides first evidence that fMRI neurofeedback has a facilitating effect on anxiety regulation in spider phobia.
View Full Paper →The Potential of Neurofeedback in the Treatment of Eating Disorders: A Review of the Literature
Abstract Neurofeedback is defined as the training of voluntary regulation of localised neural activity using real‐time feedback through a brain‐computer interface. It has shown initial success as a potential clinical treatment tool in proof of concept studies, but has yet to be evaluated with respect to eating disorders. This paper (i) provides a brief overview of the current status of eating disorder treatments; (ii) describes the studies to date that use neurofeedback involving electroencephalography, real‐time functional magnetic resonance imaging or near‐infrared spectroscopy; and (iii) considers the potential of these technologies as treatments for eating disorders. Copyright © 2013 John Wiley & Sons, Ltd and Eating Disorders Association.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss real-time and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →