Real-Time Functional Magnetic Resonance Imaging (rtfMRI)
Research Papers
Showing 6 of 12The efficacy of neurofeedback for alcohol use disorders - a systematic review
Background: Alcoholism is a serious social, economic and public health problem. Alcoholism can affect the gastrointestinal, neurological, cardiovascular and respiratory systems, and it can be fatal, costing the healthcare system huge amounts of money. Despite the availability of cognitive-behavioural and psychosocial therapies, alcoholism has a high recurrence rate and a dismal prognosis, with a wide inter-individual variation. As a result, better or adjuvant therapies that improve or facilitate alcoholism therapy are required. We conducted a systematic review to look into the published studies that reported the effectiveness of non-pharmacological neurofeedback (NF) interventions in patients with alcohol use disorders (AUDs). Methods: PubMed, Google Scholar, The Cochrane Library, Science Direct and Clinicaltrial.gov were searched until 4 April 2022. Original articles of any design reporting on the use of NF approaches in the treatment of AUDs were included. Information related to study design, participants, control group, neuromodulation therapy, number of sessions and key findings of the study were extracted. The Joanna Briggs Institute’s (JBI) Critical Appraisal Checklist for Studies was used to assess the quality of studies. Results: A total of 20 research articles (including 618 participants) were retrieved and included for qualitative analysis. The sample size ranged from 1 (case report) to 80, with years of publication ranging from 1977 to 2022. Nine of the 20 articles included in the study were conducted in the United States, followed by Germany, the United Kingdom, India, the Netherlands and South Korea. Out of the 20 studies included, 8 (40%) had a moderate risk of bias, while the other, i.e. 60% had a low risk of bias. The effectiveness of various neurological treatments in the treatment of AUDs was established in these 20 studies. There have been 11 studies on EEG NF training, three studies on real-time FMRI NF, two studies each on transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), and one study each on deep brain stimulation (DBS) and theta burst stimulation (TBS). These alternative neurological therapies have been demonstrated to lower alcohol cravings and consumption temporarily, reduce anxiety and depression scores, reduce relapse rates and increase control of brain activity. Conclusions: The use of various neuromodulation approaches to the treatment of AUD shows promise. However, more research with larger sample size is required.
View Full Paper →Emotion Regulation Using Virtual Environments and Real-Time fMRI Neurofeedback
Neurofeedback (NFB) enables the voluntary regulation of brain activity, with promising applications to enhance and recover emotion and cognitive processes, and their underlying neurobiology. It remains unclear whether NFB can be used to aid and sustain complex emotions, with ecological validity implications. We provide a technical proof of concept of a novel real-time functional magnetic resonance imaging (rtfMRI) NFB procedure. Using rtfMRI-NFB, we enabled participants to voluntarily enhance their own neural activity while they experienced complex emotions. The rtfMRI-NFB software (FRIEND Engine) was adapted to provide a virtual environment as brain computer interface (BCI) and musical excerpts to induce two emotions (tenderness and anguish), aided by participants' preferred personalized strategies to maximize the intensity of these emotions. Eight participants from two experimental sites performed rtfMRI-NFB on two consecutive days in a counterbalanced design. On one day, rtfMRI-NFB was delivered to participants using a region of interest (ROI) method, while on the other day using a support vector machine (SVM) classifier. Our multimodal VR/NFB approach was technically feasible and robust as a method for real-time measurement of the neural correlates of complex emotional states and their voluntary modulation. Guided by the color changes of the virtual environment BCI during rtfMRI-NFB, participants successfully increased in real time, the activity of the septo-hypothalamic area and the amygdala during the ROI based rtfMRI-NFB, and successfully evoked distributed patterns of brain activity classified as tenderness and anguish during SVM-based rtfMRI-NFB. Offline fMRI analyses confirmed that during tenderness rtfMRI-NFB conditions, participants recruited the septo-hypothalamic area and other regions ascribed to social affiliative emotions (medial frontal/temporal pole and precuneus). During anguish rtfMRI-NFB conditions, participants recruited the amygdala and other dorsolateral prefrontal and additional regions associated with negative affect. These findings were robust and were demonstrable at the individual subject level, and were reflected in self-reported emotion intensity during rtfMRI-NFB, being observed with both ROI and SVM methods and across the two sites. Our multimodal VR/rtfMRI-NFB protocol provides an engaging tool for brain-based interventions to enhance emotional states in healthy subjects and may find applications in clinical conditions associated with anxiety, stress and impaired empathy among others.
View Full Paper →Resting state functional connectivity predicts neurofeedback response
Tailoring treatments to the specific needs and biology of individual patients—personalized medicine—requires delineation of reliable predictors of response. Unfortunately, these have been slow to emerge, especially in neuropsychiatric disorders. We have recently described a real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback protocol that can reduce contamination-related anxiety, a prominent symptom of many cases of obsessive-compulsive disorder (OCD). Individual response to this intervention is variable. Here we used patterns of brain functional connectivity, as measured by baseline resting-state fMRI (rs-fMRI), to predict improvements in contamination anxiety after neurofeedback training. Activity of a region of the orbitofrontal cortex (OFC) and anterior prefrontal cortex, Brodmann area (BA) 10, associated with contamination anxiety in each subject was measured in real time and presented as a neurofeedback signal, permitting subjects to learn to modulate this target brain region. We have previously reported both enhanced OFC/BA 10 control and improved anxiety in a group of subclinically anxious subjects after neurofeedback. Five individuals with contamination-related OCD who underwent the same protocol also showed improved clinical symptomatology. In both groups, these behavioral improvements were strongly correlated with baseline whole-brain connectivity in the OFC/BA 10, computed from rs-fMRI collected several days prior to neurofeedback training. These pilot data suggest that rs-fMRI can be used to identify individuals likely to benefit from rt-fMRI neurofeedback training to control contamination anxiety
View Full Paper →The Potential of Neurofeedback in the Treatment of Eating Disorders: A Review of the Literature
Abstract Neurofeedback is defined as the training of voluntary regulation of localised neural activity using real‐time feedback through a brain‐computer interface. It has shown initial success as a potential clinical treatment tool in proof of concept studies, but has yet to be evaluated with respect to eating disorders. This paper (i) provides a brief overview of the current status of eating disorder treatments; (ii) describes the studies to date that use neurofeedback involving electroencephalography, real‐time functional magnetic resonance imaging or near‐infrared spectroscopy; and (iii) considers the potential of these technologies as treatments for eating disorders. Copyright © 2013 John Wiley & Sons, Ltd and Eating Disorders Association.
View Full Paper →Neurofeedback: A promising tool for the self-regulation of emotion networks
Real-time functional magnetic resonance imaging (fMRI) affords the opportunity to explore the feasibility of self-regulation of functional brain networks through neurofeedback. We localised emotion networks individually in thirteen participants using fMRI and trained them to upregulate target areas, including the insula and amygdala. Participants achieved a high degree of control of these networks after a brief training period. We observed activation increases during periods of upregulation of emotion networks in the precuneus and medial prefrontal cortex and, with increasing training success, in the ventral striatum. These findings demonstrate the feasibility of fMRI-based neurofeedback of emotion networks and suggest a possible development into a therapeutic tool.
View Full Paper →Volitional Control of Anterior Insula Activity Modulates the Response to Aversive Stimuli. A Real-Time Functional Magnetic Resonance Imaging Study
Background A promising new approach to cognitive neuroscience based on real-time functional magnetic resonance imaging (rtfMRI) demonstrated that the learned regulation of the neurophysiological activity in circumscribed brain regions can be used as an independent variable to observe its effects on behavior. Here, for the first time, we investigated the modulatory effect of learned regulation of blood oxygenation level-dependent (BOLD) response in the left anterior insula on the perception of visual emotional stimuli. Methods Three groups of participants (n = 27) were tested: two underwent four rtfMRI training sessions receiving either specific (n = 9) or unspecific feedback (n = 9) of the insula's BOLD response, respectively, and one group used emotional imagery alone (n = 9) without rtfMRI feedback. During training, all groups were required to assess aversive and neutral pictures. Results Participants able to significantly increase BOLD signal in the target region rated the aversive pictures more negatively. We measured a significant correlation between enhanced left anterior insula activity and increased negative valence ratings of the aversive stimuli. Control groups performing either rtfMRI training with unspecific feedback or an emotional imagery training alone were not able to significantly enhance activity in the left anterior insula and did not show changes in subjective emotional responses. Conclusions This study corroborates traditional neuroimaging studies demonstrating a critical role of the anterior insula in the explicit appraisal of emotional stimuli and indicates the adopted approach as a potential tool for clinical applications in emotional disorders.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss real-time functional magnetic resonance imaging (rtfmri) and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →