Signal Processing, Computer-Assisted

Research Papers

Showing 6 of 8

Active Physical Practice Followed by Mental Practice Using BCI-Driven Hand Exoskeleton: A Pilot Trial for Clinical Effectiveness and Usability

Chowdhury, Anirban, Meena, Yogesh Kumar, Raza, Haider, Bhushan, Braj, Uttam, Ashwani Kumar, Pandey, Nirmal, Hashmi, Adnan Ariz, Bajpai, Alok, Dutta, Ashish, Prasad, Girijesh (2018) · IEEE journal of biomedical and health informatics

Appropriately combining mental practice (MP) and physical practice (PP) in a poststroke rehabilitation is critical for ensuring a substantially positive rehabilitation outcome. Here, we present a rehabilitation protocol incorporating a separate active PP stage followed by MP stage, using a hand exoskeleton and brain-computer interface (BCI). The PP stage was mediated by a force sensor feedback-based assist-as-needed control strategy, whereas the MP stage provided BCI-based multimodal neurofeedback combining anthropomorphic visual feedback and proprioceptive feedback of the impaired hand extension attempt. A six week long clinical trial was conducted on four hemiparetic stroke patients (screened out of 16) with a left-hand disability. The primary outcome, motor functional recovery, was measured in terms of changes in grip-strength (GS) and action research arm test (ARAT) scores; whereas the secondary outcome, usability of the system was measured in terms of changes in mood, fatigue, and motivation on a visual-analog-scale. A positive rehabilitative outcome was found as the group mean changes from the baseline in the GS and ARAT were +6.38 kg and +5.66 accordingly. The VAS scale measurements also showed betterment in mood ( 1.38), increased motivation (+2.10) and reduced fatigue (0.98) as compared to the baseline. Thus, the proposed neurorehabilitation protocol is found to be promising both in terms of clinical effectiveness and usability.

View Full Paper →

Extracting information from the shape and spatial distribution of evoked potentials

Lopes-Dos-Santos, Vítor, Rey, Hernan G., Navajas, Joaquin, Quian Quiroga, Rodrigo (2018) · Journal of Neuroscience Methods

BACKGROUND: Over 90 years after its first recording, scalp electroencephalography (EEG) remains one of the most widely used techniques in human neuroscience research, in particular for the study of event-related potentials (ERPs). However, because of its low signal-to-noise ratio, extracting useful information from these signals continues to be a hard-technical challenge. Many studies focus on simple properties of the ERPs such as peaks, latencies, and slopes of signal deflections. NEW METHOD: To overcome these limitations, we developed the Wavelet-Information method which uses wavelet decomposition, information theory, and a quantification based on single-trial decoding performance to extract information from evoked responses. RESULTS: Using simulations and real data from four experiments, we show that the proposed approach outperforms standard supervised analyses based on peak amplitude estimation. Moreover, the method can extract information using the raw data from all recorded channels using no a priori knowledge or pre-processing steps. COMPARISON WITH EXISTING METHOD(S): We show that traditional approaches often disregard important features of the signal such as the shape of EEG waveforms. Also, other approaches often require some form of a priori knowledge for feature selection and lead to problems of multiple comparisons. CONCLUSIONS: This approach offers a new and complementary framework to design experiments that go beyond the traditional analyses of ERPs. Potentially, it allows a wide usage beyond basic research; such as for clinical diagnosis, brain-machine interfaces, and neurofeedback applications requiring single-trial analyses.

View Full Paper →

Portable wireless neurofeedback system of EEG alpha rhythm enhances memory

Wei, Ting-Ying, Chang, Da-Wei, Liu, You-De, Liu, Chen-Wei, Young, Chung-Ping, Liang, Sheng-Fu, Shaw, Fu-Zen (2017) · Biomedical Engineering Online

BACKGROUND: Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. METHODS: The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. RESULTS: The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. CONCLUSIONS: Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.

View Full Paper →

Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback

Zotev, Vadim, Phillips, Raquel, Yuan, Han, Misaki, Masaya, Bodurka, Jerzy (2014) · NeuroImage

Neurofeedback is a promising approach for non-invasive modulation of human brain activity with applications for treatment of mental disorders and enhancement of brain performance. Neurofeedback techniques are commonly based on either electroencephalography (EEG) or real-time functional magnetic resonance imaging (rtfMRI). Advances in simultaneous EEG-fMRI have made it possible to combine the two approaches. Here we report the first implementation of simultaneous multimodal rtfMRI and EEG neurofeedback (rtfMRI-EEG-nf). It is based on a novel system for real-time integration of simultaneous rtfMRI and EEG data streams. We applied the rtfMRI-EEG-nf to training of emotional self-regulation in healthy subjects performing a positive emotion induction task based on retrieval of happy autobiographical memories. The participants were able to simultaneously regulate their BOLD fMRI activation in the left amygdala and frontal EEG power asymmetry in the high-beta band using the rtfMRI-EEG-nf. Our proof-of-concept results demonstrate the feasibility of simultaneous self-regulation of both hemodynamic (rtfMRI) and electrophysiological (EEG) activities of the human brain. They suggest potential applications of rtfMRI-EEG-nf in the development of novel cognitive neuroscience research paradigms and enhanced cognitive therapeutic approaches for major neuropsychiatric disorders, particularly depression.

View Full Paper →

Another kind of 'BOLD Response': answering multiple-choice questions via online decoded single-trial brain signals

Sorger, Bettina, Dahmen, Brigitte, Reithler, Joel, Gosseries, Olivia, Maudoux, Audrey, Laureys, Steven, Goebel, Rainer (2009) · Progress in Brain Research

The term 'locked-in'syndrome (LIS) describes a medical condition in which persons concerned are severely paralyzed and at the same time fully conscious and awake. The resulting anarthria makes it impossible for these patients to naturally communicate, which results in diagnostic as well as serious practical and ethical problems. Therefore, developing alternative, muscle-independent communication means is of prime importance. Such communication means can be realized via brain-computer interfaces (BCIs) circumventing the muscular system by using brain signals associated with preserved cognitive, sensory, and emotional brain functions. Primarily, BCIs based on electrophysiological measures have been developed and applied with remarkable success. Recently, also blood flow-based neuroimaging methods, such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), have been explored in this context. After reviewing recent literature on the development of especially hemodynamically based BCIs, we introduce a highly reliable and easy-to-apply communication procedure that enables untrained participants to motor-independently and relatively effortlessly answer multiple-choice questions based on intentionally generated single-trial fMRI signals that can be decoded online. Our technique takes advantage of the participants' capability to voluntarily influence certain spatio-temporal aspects of the blood oxygenation level-dependent (BOLD) signal: source location (by using different mental tasks), signal onset and offset. We show that healthy participants are capable of hemodynamically encoding at least four distinct information units on a single-trial level without extensive pretraining and with little effort. Moreover, real-time data analysis based on simple multi-filter correlations allows for automated answer decoding with a high accuracy (94.9%) demonstrating the robustness of the presented method. Following our 'proof of concept', the next step will involve clinical trials with LIS patients, undertaken in close collaboration with their relatives and caretakers in order to elaborate individually tailored communication protocols. As our procedure can be easily transferred to MRI-equipped clinical sites, it may constitute a simple and effective possibility for online detection of residual consciousness and for LIS patients to communicate basic thoughts and needs in case no other alternative communication means are available (yet)--especially in the acute phase of the LIS. Future research may focus on further increasing the efficiency and accuracy of fMRI-based BCIs by implementing sophisticated data analysis methods (e.g., multivariate and independent component analysis) and neurofeedback training techniques. Finally, the presented BCI approach could be transferred to portable fNIRS systems as only this would enable hemodynamically based communication in daily life situations.

View Full Paper →

Estimating alertness from the EEG power spectrum

Jung, T. P., Makeig, S., Stensmo, M., Sejnowski, T. J. (1997) · IEEE transactions on bio-medical engineering

In tasks requiring sustained attention, human alertness varies on a minute time scale. This can have serious consequences in occupations ranging from air traffic control to monitoring of nuclear power plants. Changes in the electroencephalographic (EEG) power spectrum accompany these fluctuations in the level of alertness, as assessed by measuring simultaneous changes in EEG and performance on an auditory monitoring task. By combining power spectrum estimation, principal component analysis and artificial neural networks, we show that continuous, accurate, noninvasive, and near real-time estimation of an operator's global level of alertness is feasible using EEG measures recorded from as few as two central scalp sites. This demonstration could lead to a practical system for noninvasive monitoring of the cognitive state of human operators in attention-critical settings.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss signal processing, computer-assisted and how neurofeedback training can help

* Required fields