Transcranial magnetic stimulation (TMS)

Research Papers

Would frontal midline theta indicate cognitive changes induced by non-invasive brain stimulation? A mini review

Nakamura-Palacios, Ester Miyuki, Falçoni Júnior, Aldren Thomazini, Anders, Quézia Silva, De Paula, Lucas Dos Santos Pereira, Zottele, Mariana Zamprogno, Ronchete, Christiane Furlan, Lirio, Pedro Henrique Cassaro (2023) · Frontiers in Human Neuroscience

To the best of our knowledge, neurophysiological markers indicating changes induced by non-invasive brain stimulation (NIBS) on cognitive performance, especially one of the most investigated under these procedures, working memory (WM), are little known. Here, we will briefly introduce frontal midline theta (FM-theta) oscillation (4–8 Hz) as a possible indicator for NIBS effects on WM processing. Electrophysiological recordings of FM-theta oscillation seem to originate in the medial frontal cortex and the anterior cingulate cortex, but they may be driven more subcortically. FM-theta has been acknowledged to occur during memory and emotion processing, and it has been related to WM and sustained attention. It mainly occurs in the frontal region during a delay period, in which specific information previously shown is no longer perceived and must be manipulated to allow a later (delayed) response and observed in posterior regions during information maintenance. Most NIBS studies investigating effects on cognitive performance have used n-back tasks that mix manipulation and maintenance processes. Thus, if considering FM-theta as a potential neurophysiological indicator for NIBS effects on different WM components, adequate cognitive tasks should be considered to better address the complexity of WM processing. Future research should also evaluate the potential use of FM-theta as an index of the therapeutic effects of NIBS intervention on neuropsychiatric disorders, especially those involving the ventral medial prefrontal cortex and cognitive dysfunctions.

View Full Paper →

The efficacy of neurofeedback for alcohol use disorders - a systematic review

Dave, F, Tripathi, R (2022) · The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry

Background: Alcoholism is a serious social, economic and public health problem. Alcoholism can affect the gastrointestinal, neurological, cardiovascular and respiratory systems, and it can be fatal, costing the healthcare system huge amounts of money. Despite the availability of cognitive-behavioural and psychosocial therapies, alcoholism has a high recurrence rate and a dismal prognosis, with a wide inter-individual variation. As a result, better or adjuvant therapies that improve or facilitate alcoholism therapy are required. We conducted a systematic review to look into the published studies that reported the effectiveness of non-pharmacological neurofeedback (NF) interventions in patients with alcohol use disorders (AUDs). Methods: PubMed, Google Scholar, The Cochrane Library, Science Direct and Clinicaltrial.gov were searched until 4 April 2022. Original articles of any design reporting on the use of NF approaches in the treatment of AUDs were included. Information related to study design, participants, control group, neuromodulation therapy, number of sessions and key findings of the study were extracted. The Joanna Briggs Institute’s (JBI) Critical Appraisal Checklist for Studies was used to assess the quality of studies. Results: A total of 20 research articles (including 618 participants) were retrieved and included for qualitative analysis. The sample size ranged from 1 (case report) to 80, with years of publication ranging from 1977 to 2022. Nine of the 20 articles included in the study were conducted in the United States, followed by Germany, the United Kingdom, India, the Netherlands and South Korea. Out of the 20 studies included, 8 (40%) had a moderate risk of bias, while the other, i.e. 60% had a low risk of bias. The effectiveness of various neurological treatments in the treatment of AUDs was established in these 20 studies. There have been 11 studies on EEG NF training, three studies on real-time FMRI NF, two studies each on transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), and one study each on deep brain stimulation (DBS) and theta burst stimulation (TBS). These alternative neurological therapies have been demonstrated to lower alcohol cravings and consumption temporarily, reduce anxiety and depression scores, reduce relapse rates and increase control of brain activity. Conclusions: The use of various neuromodulation approaches to the treatment of AUD shows promise. However, more research with larger sample size is required.

View Full Paper →

Neurotherapeutics for Attention Deficit/Hyperactivity Disorder (ADHD): A Review

Rubia, Katya, Westwood, Samuel, Aggensteiner, Pascal-M., Brandeis, Daniel (2021) · Cells

This review focuses on the evidence for neurotherapeutics for attention deficit/hyperactivity disorder (ADHD). EEG-neurofeedback has been tested for about 45 years, with the latest meta-analyses of randomised controlled trials (RCT) showing small/medium effects compared to non-active controls only. Three small studies piloted neurofeedback of frontal activations in ADHD using functional magnetic resonance imaging or near-infrared spectroscopy, finding no superior effects over control conditions. Brain stimulation has been applied to ADHD using mostly repetitive transcranial magnetic and direct current stimulation (rTMS/tDCS). rTMS has shown mostly negative findings on improving cognition or symptoms. Meta-analyses of tDCS studies targeting mostly the dorsolateral prefrontal cortex show small effects on cognitive improvements with only two out of three studies showing clinical improvements. Trigeminal nerve stimulation has been shown to improve ADHD symptoms with medium effect in one RCT. Modern neurotherapeutics are attractive due to their relative safety and potential neuroplastic effects. However, they need to be thoroughly tested for clinical and cognitive efficacy across settings and beyond core symptoms and for their potential for individualised treatment.

View Full Paper →

Neuromodulation Integrating rTMS and Neurofeedback for the Treatment of Autism Spectrum Disorder: An Exploratory Study

Sokhadze, Estate M., El-Baz, Ayman S., Tasman, Allan, Sears, Lonnie L., Wang, Yao, Lamina, Eva V., Casanova, Manuel F. (2014) · Applied Psychophysiology and Biofeedback

Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social interaction, language, stereotyped behaviors, and restricted range of interests. In previous studies low frequency repetitive transcranial magnetic stimulation (rTMS) has been used, with positive behavioral and electrophysiological results, for the experimental treatment in ASD. In this study we combined prefrontal rTMS sessions with electroencephalographic (EEG) neurofeedback (NFB) to prolong and reinforce TMS-induced EEG changes. The pilot trial recruited 42 children with ASD (~14.5 years). Outcome measures included behavioral evaluations and reaction time test with event-related potential (ERP) recording. For the main goal of this exploratory study we used rTMS-neurofeedback combination (TMS-NFB, N = 20) and waitlist (WTL, N = 22) groups to examine effects of 18 sessions of integrated rTMS-NFB treatment or wait period) on behavioral responses, stimulus and response-locked ERPs, and other functional and clinical outcomes. The underlying hypothesis was that combined TMS-NFB will improve executive functions in autistic patients as compared to the WTL group. Behavioral and ERP outcomes were collected in pre- and post-treatment tests in both groups. Results of the study supported our hypothesis by demonstration of positive effects of combined TMS-NFB neurotherapy in active treatment group as compared to control WTL group, as the TMS-NFB group showed significant improvements in behavioral and functional outcomes as compared to the WTL group

View Full Paper →

Slow cortical potential and theta/beta neurofeedback training in adults: effects on attentional processes and motor system excitability

Studer, Petra, Kratz, Oliver, Gevensleben, Holger, Rothenberger, Aribert, Moll, Gunther H., Hautzinger, Martin, Heinrich, Hartmut (2014) · Frontiers in Human Neuroscience

Neurofeedback (NF) is being successfully applied, among others, in children with attention deficit/hyperactivity disorder (ADHD) and as a peak performance training in healthy subjects. However, the neuronal mechanisms mediating a successful NF training have not yet been sufficiently uncovered for both theta/beta (T/B), and slow cortical potential (SCP) training, two protocols established in NF in ADHD. In the present, randomized, controlled investigation in adults without a clinical diagnosis (n = 59), the specificity of the effects of these two NF protocols on attentional processes and motor system excitability were to be examined, focusing on the underlying neuronal mechanisms. Neurofeedback training consisted of 10 double sessions, and self-regulation skills were analyzed. Pre- and post-training assessments encompassed performance and event-related potential measures during an attention task, and motor system excitability assessed by transcranial magnetic stimulation. Some NF protocol-specific effects have been obtained. However, due to the limited sample size medium effects did not reach the level of significance. Self-regulation abilities during negativity trials of the SCP training were associated with increased contingent negative variation amplitudes, indicating improved resource allocation during cognitive preparation. Theta/beta training was associated with increased response speed and decreased target-P3 amplitudes after successful theta/beta regulation suggested reduced attentional resources necessary for stimulus evaluation. Motor system excitability effects after theta/beta training paralleled the effects of methylphenidate. Overall, our results are limited by the non-sufficiently acquired self-regulation skills, but some specific effects between good and poor learners could be described. Future studies with larger sample sizes and sufficient acquisition of self-regulation skills are neededto further evaluate the protocol-specific effects on attention and motor system excitability reported.

View Full Paper →

Neurofeedback Treatment of Depression and Anxiety

Hammond, D. Corydon (2005) · Journal of Adult Development

A robust body of research documents that there are biological predispositions that often exist for depression, anxiety, and obsessive-compulsive disorder. However, new research has shown that medication is only mildly more effective than placebo in the treatment of these problems. In treating these conditions, neurofeedback (EEG biofeedback) may offer an alternative to invasive treatments such as medication, ECT, and intense levels of transcrancial magnetic stimulation. This paper reviews the neurofeedback literature with these problems, finding particularly positive research support for the treatment of anxiety disorders. New findings on the neurofeedback treatment of depression are presented.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss transcranial magnetic stimulation (tms) and how neurofeedback training can help

* Required fields