Wechsler Intelligence Scale

Research Papers

Effects of Neurofeedback Training on Attention in Children with Intellectual Disability

Hong, Changhee, Lee, Inkyoung (2012) · Journal of Neurotherapy

This study investigated effects of neurofeedback (NFB) training on attention in children with intellectual disability (ID). Twenty-one children with ID were assigned to an NFB training group (n = 7), to a visual perception (VP) training group (n = 7), or to a no-treatment group (n = 7). Two groups received 36 sessions of NFB or VP training, respectively, over 12 weeks. Children's Color Trails Test-2, Stroop Color and Word Test, and Digit Span were administered to all participants before and after training. The follow-up study was conducted with both the NFB and VP groups in the same way after 3 months. The EEGs of the NFB group also were measured. The NFB group showed significantly improved scores on the all tests compared to the 2 control groups. The brainwaves of the frontal lobes of the NFB group declined significantly in theta wave amplitude and theta-to-beta ratio. The NFB results were maintained in the follow-up study. Beta/SMR uptraining seemed to be an effective way to enhance attention in children with ID.

View Full Paper →

Why Do Patients with Partial Epilepsy Improve Their IQ After Training to Self-Regulate Slow Cortical Potentials?

Strehl, Ute, Kotchoubey, Boris, Martinetz, Simone, Birbaumer, Niels (2011) · Journal of Neurotherapy

In patients with epilepsy, not only seizures but also cognitive, emotional, and social functioning are of increasing interest in research (Kelley, Jacobs, & Lowenstein, 2009). As a decrease in cognitive functions over the course of the illness is usually reported, we wanted to explore changes in Intelligence Scores observed after a neurofeedback treatment in patients with drug-resistant epilepsies. In a controlled study that compared the outcome of three different interventions (training to regulate slow cortical potentials, N = 34; training to regulate breath rate and the amount of carbon dioxide in the end tidal volume of the exhaled air, N = 11; modification of drug regime, N = 25), pre- and postmeasurements of a short version of the Wechsler Intelligence Scale were applied. The interval between the two assessments was more than 12 months, with a mean of 61 weeks. Mean age of the patients was 35, with a range from 17 to 57. The highly significant 7-point increment of IQ only after training of slow cortical potentials was not related to clinical (e.g., seizure reduction) or neuropsychological (e.g., attention and memory) variables. Instead, it was related to psychophysiological measures: IQ change was inversely related to the Latency of the P300 component of event-related brain potentials and directly related to the Latency of the P2 component and the increase of N2 Amplitude during training. We conclude that regulation training of slow cortical potentials improves IQ in patients with refractory partial epilepsy, which might be related to an improved ability for controlled allocation of cognitive resources.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss wechsler intelligence scale and how neurofeedback training can help

* Required fields