schizophrenia
Research Papers
Showing 6 of 19Improving Clinical, Cognitive, and Psychosocial Dysfunctions in Patients with Schizophrenia: A Neurofeedback Randomized Control Trial
OBJECTIVES: The aim of this study was to use neurofeedback (NF) training as the add-on therapy in patients with schizophrenia to improve their clinical, cognitive, and psychosocial condition. The study, thanks to the monitoring of various conditions, quantitative electroencephalogram (QEEG) and brain-derived neurotrophic factor (BDNF), was supposed to give an insight into mechanisms underlying NF training results. METHODS: Forty-four male patients with schizophrenia, currently in a stable, incomplete remission, were recruited into two, 3-month rehabilitation programs, with standard rehabilitation as a control group (R) or with add-on NF training (NF). Pre- and posttherapy primary outcomes were compared: clinical (Positive and Negative Syndrome Scale (PANSS)), cognitive (Color Trails Test (CTT), d2 test), psychosocial functioning (General Self-Efficacy Scale (GSES), Beck Cognitive Insight Scale (BCIS), and Acceptance of Illness Scale (AIS)), quantitative electroencephalogram (QEEG), auditory event-related potentials (ERPs), and serum level of BDNF. Results. Both groups R and NF improved significantly in clinical ratings (Positive and Negative Syndrome Scale (PANSS)). In-between analyses unveiled some advantages of add-on NF therapy over standard rehabilitation. GSES scores improved significantly, giving the NF group of patients greater ability to cope with stressful or difficult social demands. Also, the serum-level BDNF increased significantly more in the NF group. Post hoc analyses indicated the possibility of creating a separate PANSS subsyndrome, specifically related to cognitive, psychosocial, and BDNF effects of NF therapy. CONCLUSIONS: Neurofeedback can be effectively used as the add-on therapy in schizophrenia rehabilitation programs. The method requires further research regarding its clinical specificity and understanding mechanisms of action.
View Full Paper →Recent findings on neurofeedback training for auditory hallucinations in schizophrenia
PURPOSE OF REVIEW: To provide recent evidence on real-time neurofeedback (NFB) training for auditory verbal hallucinations (AVH) in schizophrenia patients. RECENT FINDINGS: NFB is a promising technique that allows patients to gain control over their AVH by modulating their own speech-related/language-related networks including superior temporal gyrus (STG) and anterior cingulate cortex (ACC) using fMRI, fNIRS and EEG/MEG. A recent limited number of studies showed that while an EEG-based NFB study failed to regulate auditory-evoked potentials and reduce AVH, downregulation of STG hyperactivity and upregulation of ACC activity with fMRI-based NFB appear to alleviate treatment-resistant AVH in schizophrenia patients. A deeper understanding of AVH and development of more effective methodologies are still needed. SUMMARY: Despite recent innovations in antipsychotics, many schizophrenia patients continue to suffer from treatment-resistant AVH and social dysfunctions. Recent studies suggested that real-time NFB shows promise in enabling patients to gain control over AVH by regulating their own speech-related/language-related networks. Although fMRI-NFB is suitable for regulating localized activity, EEG/MEG-NFB are ideal for regulating the ever-changing AVH. Although there are still many challenges including logistic complexity and burden on patients, we hope that such innovative real-time NFB trainings will help patients to alleviate severe symptoms and improve social functioning.
View Full Paper →Just a very expensive breathing training? Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback
Real-time functional magnetic resonance imaging neurofeedback (rtfMRI NFB) is a promising method for targeted regulation of pathological brain processes in mental disorders. But most NFB approaches so far have used relatively restricted regional activation as a target, which might not address the complexity of the underlying network changes. Aiming towards advancing novel treatment tools for disorders like schizophrenia, we developed a large-scale network functional connectivity-based rtfMRI NFB approach targeting dorsolateral prefrontal cortex and anterior cingulate cortex connectivity with the striatum. In a double-blind randomized yoke-controlled single-session feasibility study with N = 38 healthy controls, we identified strong associations between our connectivity estimates and physiological parameters reflecting the rate and regularity of breathing. These undesired artefacts are especially detrimental in rtfMRI NFB, where the same data serves as an online feedback signal and offline analysis target. To evaluate ways to control for the identified respiratory artefacts, we compared model-based physiological nuisance regression and global signal regression (GSR) and found that GSR was the most effective method in our data. Our results strongly emphasize the need to control for physiological artefacts in connectivity-based rtfMRI NFB approaches and suggest that GSR might be a useful method for online data correction for respiratory artefacts.
View Full Paper →Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: Part 2: Default mode network -preliminary evidence
Auditory hallucinations (AHs) are one of the most distressing symptoms of schizophrenia (SZ) and are often resistant to medication. Imaging studies of individuals with SZ show hyperactivation of the default mode network (DMN) and the superior temporal gyrus (STG). Studies in SZ show DMN hyperconnectivity and reduced anticorrelation between DMN and the central executive network (CEN). DMN hyperconnectivity has been associated with positive symptoms such as AHs while reduced DMN anticorrelations with cognitive impairment. Using real-time fMRI neurofeedback (rt-fMRI-NFB) we trained SZ patients to modulate DMN and CEN networks. Meditation is effective in reducing AHs in SZ and to modulate brain network integration and increase DMN anticorrelations. Consequently, patients were provided with meditation strategies to enhance their abilities to modulate DMN/CEN. Results show a reduction of DMN hyperconnectivity and increase in DMNCEN anticorrelation. Furthermore, the change in individual DMN connectivity significantly correlated with reductions in AHs. This is the first time that meditation enhanced through rt-fMRI-NFB is used to reduce AHs in SZ. Moreover, it provides the first empirical evidence for a direct causal relation between meditation enhanced rt-fMRI-NFB modulation of DMNCEN activity and post-intervention modulation of resting state networks ensuing in reductions in frequency and severity of AHs.
View Full Paper →Real-Time Functional Magnetic Resonance Imaging Neurofeedback for the Relief of Distressing Auditory-Verbal Hallucinations: Methodological and Empirical Advances
Auditory-verbal hallucinations (AVH) are often associated with high levels of distress and disability in individuals with schizophrenia-spectrum disorders. In around 30% of individuals with distressing AVH and diagnosed with schizophrenia, traditional antipsychotic drugs have little or no effect. Thus, it is important to develop mechanistic models of AVH to inform new treatments. Recently a small number of studies have begun to explore the use of real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) for the treatment of AVH in individuals with schizophrenia. rtfMRI-NF protocols have been developed to provide feedback about brain activation in real time to enable participants to progressively achieve voluntary control over their brain activity. We offer a conceptual review of the background and general features of neurofeedback procedures before summarizing and evaluating existing mechanistic models of AVH to identify feasible neural targets for the application of rtfMRI-NF as a potential treatment. We consider methodological issues, including the choice of localizers and practicalities in logistics when setting up neurofeedback procedures in a clinical setting. We discuss clinical considerations relating to the use of rtfMRI-NF for AVH in individuals distressed by their experiences and put forward a number of questions and recommendations about best practice. Lastly, we conclude by offering suggestions for new avenues for neurofeedback methodology and mechanistic targets in relation to the research and treatment of AVH.
View Full Paper →Neurofeedback Treatment of Negative Symptoms in Schizophrenia: Two Case Reports
Negative symptoms of schizophrenia, like diminished emotional expression and a dearth of self-initiated behavior do not respond reliably to anti-psychotic medication or to conventional psychotherapeutic approaches. Starting from evidence on the probable neural basis of such symptoms and on the effectiveness of neurofeedback with other psychological disorders, the present case study applied 20 sessions of EEG neurofeedback to a 45-year-old female and a 30-year-old male, both diagnosed with severe negative symptoms of schizophrenia. In both cases GAF scores were improved significantly and at the end of treatment, both patients did not meet the diagnostic criteria of negative symptomatology any longer. Symptom reduction went along with an obvious improvement of social, interpersonal, and cognitive abilities according to the clinical impression. Detailed data analysis revealed that these improvements went along with corresponding changes of EEG parameters and with distinct patterns and strategies of change in each of the two individuals. The results suggest that EEG neurofeedback should be examined on a larger scale as it offers a promising alternative to existing treatment approaches for negative symptoms in schizophrenia.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss schizophrenia and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →