Stress Disorders, Post-Traumatic

Research Papers

Showing 6 of 19

Amygdala downregulation training using fMRI neurofeedback in post-traumatic stress disorder: a randomized, double-blind trial

Zhao, Zhiying, Duek, Or, Seidemann, Rebecca, Gordon, Charles, Walsh, Christopher, Romaker, Emma, Koller, William N., Horvath, Mark, Awasthi, Jitendra, Wang, Yao, O'Brien, Erin, Fichtenholtz, Harlan, Hampson, Michelle, Harpaz-Rotem, Ilan (2023) · Translational Psychiatry

Hyperactivation of amygdala is a neural marker for post-traumatic stress disorder (PTSD) and improvement in control over amygdala activity has been associated with treatment success in PTSD. In this randomized, double-blind clinical trial we evaluated the efficacy of a real-time fMRI neurofeedback intervention designed to train control over amygdala activity following trauma recall. Twenty-five patients with PTSD completed three sessions of neurofeedback training in which they attempted to downregulate the feedback signal after exposure to personalized trauma scripts. For subjects in the active experimental group (N = 14), the feedback signal was from a functionally localized region of their amygdala associated with trauma recall. For subjects in the control group (N = 11), yoked-sham feedback was provided. Changes in control over the amygdala and PTSD symptoms served as the primary and secondary outcome measurements, respectively. We found significantly greater improvements in control over amygdala activity in the active group than in the control group 30-days following the intervention. Both groups showed improvements in symptom scores, however the symptom reduction in the active group was not significantly greater than in the control group. Our finding of greater improvement in amygdala control suggests potential clinical application of neurofeedback in PTSD treatment. Thus, further development of amygdala neurofeedback training in PTSD treatment, including evaluation in larger samples, is warranted.

View Full Paper →

Neurofeedback for post-traumatic stress disorder: systematic review and meta-analysis of clinical and neurophysiological outcomes

Askovic, Mirjana, Soh, Nerissa, Elhindi, James, Harris, Anthony W. F. (2023) · European Journal of Psychotraumatology

Background: Posttraumatic stress disorder (PTSD) is a debilitating condition affecting millions of people worldwide. Existing treatments often fail to address the complexity of its symptoms and functional impairments resulting from severe and prolonged trauma. Electroencephalographic Neurofeedback (NFB) has emerged as a promising treatment that aims to reduce the symptoms of PTSD by modulating brain activity.Objective: We conducted a systematic review and meta-analysis of ten clinical trials to answer the question: how effective is NFB in addressing PTSD and other associated symptoms across different trauma populations, and are these improvements related to neurophysiological changes?Method: The review followed the Preferred Reporting Items for Systematic Reviews and Meta analyses guidelines. We considered all published and unpublished randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs) involving adults with PTSD as a primary diagnosis without exclusion by type of trauma, co-morbid diagnosis, locality, or sex. Ten controlled studies were included; seven RCTs and three NRSIs with a total number of participants n = 293 (128 male). Only RCTs were included in the meta-analysis (215 participants; 88 male).Results: All included studies showed an advantage of NFB over control conditions in reducing symptoms of PTSD, with indications of improvement in symptoms of anxiety and depression and related neurophysiological changes. Meta-analysis of the pooled data shows a significant reduction in PTSD symptoms post-treatment SMD of -1.76 (95% CI -2.69, -0.83), and the mean remission rate was higher in the NFB group (79.3%) compared to the control group (24.4%). However, the studies reviewed were mostly small, with heterogeneous populations and varied quality.Conclusions: The effect of NFB on the symptoms of PTSD was moderate and mechanistic evidence suggested that NFB leads to therapeutic changes in brain functioning. Future research should focus on more rigorous methodological designs, expanded sample size and longer follow-up.

View Full Paper →

Differential mechanisms of posterior cingulate cortex downregulation and symptom decreases in posttraumatic stress disorder and healthy individuals using real-time fMRI neurofeedback

Nicholson, Andrew A., Rabellino, Daniela, Densmore, Maria, Frewen, Paul A., Steryl, David, Scharnowski, Frank, Théberge, Jean, Neufeld, Richard W. J., Schmahl, Christian, Jetly, Rakesh, Lanius, Ruth A. (2022) · Brain and Behavior

BACKGROUND: Intrinsic connectivity networks, including the default mode network (DMN), are frequently disrupted in individuals with posttraumatic stress disorder (PTSD). The posterior cingulate cortex (PCC) is the main hub of the posterior DMN, where the therapeutic regulation of this region with real-time fMRI neurofeedback (NFB) has yet to be explored. METHODS: We investigated PCC downregulation while processing trauma/stressful words over 3 NFB training runs and a transfer run without NFB (total n = 29, PTSD n = 14, healthy controls n = 15). We also examined the predictive accuracy of machine learning models in classifying PTSD versus healthy controls during NFB training. RESULTS: Both the PTSD and healthy control groups demonstrated reduced reliving symptoms in response to trauma/stressful stimuli, where the PTSD group additionally showed reduced symptoms of distress. We found that both groups were able to downregulate the PCC with similar success over NFB training and in the transfer run, although downregulation was associated with unique within-group decreases in activation within the bilateral dmPFC, bilateral postcentral gyrus, right amygdala/hippocampus, cingulate cortex, and bilateral temporal pole/gyri. By contrast, downregulation was associated with increased activation in the right dlPFC among healthy controls as compared to PTSD. During PCC downregulation, right dlPFC activation was negatively correlated to PTSD symptom severity scores and difficulties in emotion regulation. Finally, machine learning algorithms were able to classify PTSD versus healthy participants based on brain activation during NFB training with 80% accuracy. CONCLUSIONS: This is the first study to investigate PCC downregulation with real-time fMRI NFB in both PTSD and healthy controls. Our results reveal acute decreases in symptoms over training and provide converging evidence for EEG-NFB targeting brain networks linked to the PCC.

View Full Paper →

Amygdala electrical-finger-print (AmygEFP) NeuroFeedback guided by individually-tailored Trauma script for post-traumatic stress disorder: Proof-of-concept

Fruchtman-Steinbok, Tom, Keynan, Jackob N., Cohen, Avihay, Jaljuli, Iman, Mermelstein, Shiri, Drori, Gadi, Routledge, Efrat, Krasnoshtein, Michael, Playle, Rebecca, Linden, David E. J., Hendler, Talma (2021) · NeuroImage. Clinical

BACKGROUND: Amygdala activity dysregulation plays a central role in post-traumatic stress disorder (PTSD). Hence learning to self-regulate one's amygdala activity may facilitate recovery. PTSD is further characterized by abnormal contextual processing related to the traumatic memory. Therefore, provoking the personal traumatic narrative while training amygdala down-regulation could enhance clinical efficacy. We report the results of a randomized controlled trial (NCT02544971) of a novel self-neuromodulation procedure (i.e. NeuroFeedback) for PTSD, aimed at down-regulating limbic activity while receiving feedback from an auditory script of a personal traumatic narrative. To scale-up applicability, neural activity was probed by an fMRI-informed EEG model of amygdala activity, termed Amygdala Electrical Finger-Print (AmygEFP). METHODS: Fifty-nine adults meeting DSM-5 criteria for PTSD were randomized between three groups: Trauma-script feedback interface (Trauma-NF) or Neutral feedback interface (Neutral-NF), and a control group of No-NF (to control for spontaneous recovery). Before and immediately after 15 NF training sessions patients were blindly assessed for PTSD symptoms and underwent one session of amygdala fMRI-NF for transferability testing. Follow-up clinical assessment was performed at 3- and 6-months following NF treatment. RESULTS: Patients in both NF groups learned to volitionally down-regulate AmygEFP signal and demonstrated a greater reduction in PTSD symptoms and improved down-regulation of the amygdala during fMRI-NF, compared to the No-NF group. The Trauma-NF group presented the largest immediate clinical improvement. CONCLUSIONS: This proof-of-concept study indicates the feasibility of the AmygEFP-NF process-driven as a scalable intervention for PTSD and illustrates its clinical potential. Further investigation is warranted to elucidate the contribution of AmygEFP-NF beyond exposure and placebo effects.

View Full Paper →

EEG Neurofeedback for Anxiety Disorders and Post-Traumatic Stress Disorders: A Blueprint for a Promising Brain-Based Therapy

Micoulaud-Franchi, J. A., Jeunet, C., Pelissolo, A., Ros, T. (2021) · Current Psychiatry Reports

PURPOSE OF REVIEW: This review provides an overview of current knowledge and understanding of EEG neurofeedback for anxiety disorders and post-traumatic stress disorders. RECENT FINDINGS: The manifestations of anxiety disorders and post-traumatic stress disorders (PTSD) are associated with dysfunctions of neurophysiological stress axes and brain arousal circuits, which are important dimensions of the research domain criteria (RDoC). Even if the pathophysiology of these disorders is complex, one of its defining signatures is behavioral and physiological over-arousal. Interestingly, arousal-related brain activity can be modulated by electroencephalogram-based neurofeedback (EEG NF), a non-pharmacological and non-invasive method that involves neurocognitive training through a brain-computer interface (BCI). EEG NF is characterized by a simultaneous learning process where both patient and computer are involved in modifying neuronal activity or connectivity, thereby improving associated symptoms of anxiety and/or over-arousal. Positive effects of EEG NF have been described for both anxiety disorders and PTSD, yet due to a number of methodological issues, it remains unclear whether symptom improvement is the direct result of neurophysiological changes targeted by EEG NF. Thus, in this work we sought to bridge current knowledge on brain mechanisms of arousal with past and present EEG NF therapies for anxiety and PTSD. In a nutshell, we discuss the neurophysiological mechanisms underlying the effects of EEG NF in anxiety disorder and PTSD, the methodological strengths/weaknesses of existing EEG NF randomized controlled trials for these disorders, and the neuropsychological factors that may impact NF training success.

View Full Paper →

Hippocampal volume recovery with real-time functional MRI amygdala neurofeedback emotional training for posttraumatic stress disorder

Misaki, Masaya, Mulyana, Beni, Zotev, Vadim, Wurfel, Brent E., Krueger, Frank, Feldner, Matthew, Bodurka, Jerzy (2021) · Journal of Affective Disorders

BACKGROUND: Small hippocampal volume is a prevalent neurostructural abnormality in posttraumatic stress disorder (PTSD). However, whether the hippocampal atrophy is the cause of disease symptoms or a pre-existing risk factor and whether it is a reversible alteration or a permanent trait are unclear. The trait- or state-dependent alteration could also differ among the hippocampal subfields. METHODS: The study examined the longitudinal hippocampal volume changes due to positive emotional training with left amygdala (LA) real-time fMRI neurofeedback (rtfMRI-nf) in combat veterans with PTSD. The participants were trained to increase the neurofeedback signal from LA (experimental group, N = 20) or brain region not involved in emotion processing (control group, N = 9) by recalling a positive autobiographical memory. The pre- and post-training structural MRI brain images were processed with FreeSurfer to evaluate the hippocampal subfield volumes. Hippocampal volumes for healthy controls (N = 43) were also examined to evaluate the baseline abnormality in PTSD. RESULTS: A significant group difference in volume change was found in the left CA1 head region. This region had the most significant volume reduction at the baseline in PTSD. The experimental group showed a significant volume increase, while the control group showed a significant volume decrease in this region. The volume change in the control group negatively correlated with interval days between the scans. LIMITATIONS: A cognitive improvement due to the hippocampal volume increase could not be found with symptom scales. CONCLUSIONS: RtfMRI-nf positive emotional training increased the hippocampus volume among people with PTSD, suggesting that hippocampal atrophy in PTSD is modifiable.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss stress disorders, post-traumatic and how neurofeedback training can help

* Required fields