Brain Diseases
Research Papers
Methodological Note: Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications
Neurofeedback is a kind of biofeedback, which teaches self-control of brain functions to subjects by measuring brain waves and providing a feedback signal. Neurofeedback usually provides the audio and or video feedback. Positive or negative feedback is produced for desirable or undesirable brain activities, respectively. In this review, we provided clinical and technical information about the following issues: (1) Various neurofeedback treatment protocols i.e. alpha, beta, alpha/theta, delta, gamma, and theta; (2) Different EEG electrode placements i.e. standard recording channels in the frontal, temporal, central, and occipital lobes; (3) Electrode montages (unipolar, bipolar); (4) Types of neurofeedback i.e. frequency, power, slow cortical potential, functional magnetic resonance imaging, and so on; (5) Clinical applications of neurofeedback i.e. treatment of attention deficit hyperactivity disorder, anxiety, depression, epilepsy, insomnia, drug addiction, schizophrenia, learning disabilities, dyslexia and dyscalculia, autistic spectrum disorders and so on as well as other applications such as pain management, and the improvement of musical and athletic performance; and (6) Neurofeedback softwares. To date, many studies have been conducted on the neurofeedback therapy and its effectiveness on the treatment of many diseases. Neurofeedback, like other treatments, has its own pros and cons. Although it is a non-invasive procedure, its validity has been questioned in terms of conclusive scientific evidence. For example, it is expensive, time-consuming and its benefits are not long-lasting. Also, it might take months to show the desired improvements. Nevertheless, neurofeedback is known as a complementary and alternative treatment of many brain dysfunctions. However, current research does not support conclusive results about its efficacy.
View Full Paper →Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation
PURPOSE OF REVIEW: Recent developments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of translational neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or brain connectivity, investigators can offer feedback of simple or complex neural signals/patterns back to the participant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we introduce some background methodology of the new developments in this field and give a perspective on how they may be used in neurorehabilitation in the future. RECENT FINDINGS: The development of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions and networks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific subcortical regions and in principle any region that can be monitored using fMRI including the cerebellum, brainstem and spinal cord. In Parkinson's disease and stroke, rt-fMRI-NF has been demonstrated to alter neural activity after the self-regulation training was completed and to modify specific behaviours. SUMMARY: Future exploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved in certain neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled clinical trials is in its infancy.
View Full Paper →Conventional and quantitative electroencephalography in psychiatry
Electrical activity of each brain region is homeostatically regulated, resulting in predictable frequency composition of the background EEG. Replicated normative databases have established that the EEG power spectrum is independent of ethnic background. Artifact-free EEG evaluated relative to such norms displays few deviant values in healthy, normally functioning individuals. In subjects with psychiatric disorders, high proportions of abnormal findings have been reported with good concordance and high specificity and sensitivity across numerous studies, distinctive within a wide variety of disorders and often contributing to differential diagnosis and selection of treatment. New three-dimensional QEEG imaging methods offer an economical alternative to other functional brain imaging modalities.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss brain diseases and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →